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Almost CR-structure

Definition 1. ([Dragomir and Tomassini])

Let M be a (2n — 1)-dimensional manifold and TM be its tangent bundle.

An almost CR-structure on M is the subbundle H ¢ CTM = TM @ C
satisfying the following:

e each fiber H,, p € M, is of complex dimension n —1
e 1 N#H ={0}, where H denotes the complex conjugation of .

Then, such (M;#) is said to be an almost CR manifold (of hypersurface
type). In addition, if it satisfies

o [[(H),[(H)] C T(H) (integrability),

we call (M; H) a CR manifold. Here, I'(H) denotes the space of all smooth
sections on H. )

@ s. Dragomir and G. Tomassini, Differential geometry and analysis on
CR manifolds. Progr. Math. 246, Birkhauser Boston, Inc., Boston,
MA, 2006.
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e Given a CR manifold (M; ), we have a unique subbundle

D = Re{H @ H} of TM and a unique bundle isomorphism J: D — D
such that J2 = —/ and H = {X — iJX|X € [(D)}, where (D) denotes
the space of all smooth sections of D. Such (D, J) is called the real
representation of H.

e Note that
[X, Y] - [JX,JY] € T(D) < [[(H),[(H)] € [(CD)
(one calls it the partial integrability of #),
(X, Y] = [UX, Y]+ J[IX, Y]+ J[X,JY]=0

& [F(H),T(H)] C T(H).
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e Assume the partial integrability of H holds and M is oriented, then it
admits globally defined a nowhere zero section 7, i.e., a real one-form on
M such that Ker(n) = D.
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The corresponding Levi form L, is defined by

L,(X,Y)=—dn(X,JY), X,Y er(D).

o If L, is non-degenerate for some 7, then the CR-structure (D, J) is said
to be non-degenerate. Moreover, if L, is hermitian, then it is said to be
pseudo-Hermitian.

o If L, is positive definite, then “non-degenerate” is replaced by “strongly
pseudoconvex” .

Definition 2.

For a fixed 1, a non-degenerate (strongly pseudoconvex, resp.) integrable
pseudo-Hermitian manifold (M; 7, J) is called a non-degenerate (strongly
pseudoconvex, resp.) integrable CR manifold.
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Tanaka-Webster connection

For a non-degenerate integrable CR manifold M = (M;n, J), we have:

e There is a unique globally defined nowhere zero tangent vector field &
on M such that n(¢) =1 and dn(-,&) = 0. (We call it the characteristic
vector field or Reeb vector field ([Reeb]).)

e Extend J to TM by ¢: ¢|p = J and ¢£ = 0.

o Extend the Levi-form to the Webster metric g, on TM by

g, = L, +n®mn, where icL, = 0.
@ G. Reeb, Sur certaines propriétés topologiques des trajectories des

systéemes dynamiques, Mémories de I'Acad. Roy, de Beligique, Sci.
Ser. 2, 27, 1-62.
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Definition 3. ([Tanaka],[Webster])

Tanaka-Webster connection ¥ on a non-degenerate integrable CR manifold
M = (M;n,J) is the unique linear connection satisfying the following
conditions:

(i) vn =0, vg =0;

D) Vg77 =0, Vo =0;

(i — 1) T(X, Y)=2L,(X,JY),, X, Y e [(D);
(i —2) T(&,¢Y) = —¢f(§, Y), Y e [(D).

@ N. Tanaka, On non-degenerate real hypersurfaces, graded Lie
algebras and Cartan connections, Japan J. Math. 2 (1976), 131-190.

ﬁ S. M. Webster, Pseudohermitian structures on a real hypersurface,
J. Diff. Geometry 13 (1978), 25-41.
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Almost contact structure and the associated CR-structure

Definition 4. ([Gray],[Sasaki])

A (2n—1)-dimensional manifold M is said to be an almost contact manifold
if its structure group of the linear frame bundle is reducible to U(n— 1) x
{1}, or equivalently, if there exist a (1,1)-tensor field ¢, a vector field &
and a 1-form 7 satisfying

n(€) =1and ¢* = —1 + 7 ®¢, (1)

where | denotes the identity transformation. We call (7,&, ¢) an almost
contact structure.

y

El Gray, J.W. Some global properties of contact structure, Ann. Math.
69 (1959), 421-450.

@ Sasaki, S. On differentiable manifolds with certain structures which
are closely related to almost contact structure |. Téhoku Math. J. 12
(1960), 456-476.
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For an almost contact manifold M = (M;n, &, ¢), the tangent space
ToM of M at each point p € M is decomposed as T,M = D, & {{},
(direct sum), where we denote D, = {v € T,M|n(v) = 0}. Then

D : p — D, defines a distribution and the restriction J = ¢|p of ¢ to D
defines an almost complex structure in D. Such (7, J) gives rise to an
almost CR-structure.

Then we find:

e Given an almost contact structure, both “non-degeneracy” of the Levi
form and “CR-integrability” of the associated almost CR-structure are
not guaranteed, in general.
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e Normality of almost contact structure: for an almost contact structure
(n,&, @) of M, the normality defined as follows. We may define naturally
an almost complex structure J* on M x R by

o d. d

where X is a vector field tangent to M, t the coordinate of R and f a
function on M x R. If the almost complex structure J* is integrable, M
is said to be normal. Then we find that (cf. [Blair] p.92)

e The associated almost CR-structure of a normal almost contact
manifold is CR-integrable.
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On the other hand, one can find always a compatible Riemannian metric,
namely which satisfies

g(oX,9Y) = g(X,Y) —n(X)n(Y) (2)

for all vector fields X, Y on M. We call (n,&, ¢, g) an almost contact
Riemannian structure of M and M = (M; n, &, ¢, g) an almost contact
Riemannian manifold. From (1) and (2) we easily get

¢6¢=0, nop=0, n(X)=g(X.9). (3)

Define a fundamental 2-form @ by ®(X, Y) = g(X, ¢Y).

e If dp = ®, then 7 is a contact structure, that is, n A (dn)"~1 # 0.
Then M = (M;n,&, ¢, g) is called a contact Riemannian manifold.

e A normal contact Riemannian manifold is called a Sasakian manifold.
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e For a contact Riemannian manifold M, we have the corresponding
pseudo-Hermitian strongly pseudo-convex almost CR-structure with

&= 8.

e Tanno defined the generalized Tanaka-Webster connection by replacing
the condition V¢ = 0 by (Vx)Y = Q(X, Y) on a contact Riemannian
manifold (whose associated pseudo-Hermitian structure is not necessarily
CR-integrable), where Q is a (1, 2)-tensor field.

@ S. Tanno, Variational problems on contact Riemannian manifolds,
Trans. Amer. Math. Soc., 314 (1989), 349-379.

For more details about the general theory of almost contact Riemannian
manifolds, we refer to [Blair].

@ D. E. Blair, Riemannian geometry of contact and symplectic
manifolds, Progress in Math. 203, Birkhauser, Boston, Basel, Berlin,
2010.
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Real hypersurfaces of Kahler manifolds

Let M be an oriented real hypersurface of a Kahler manifold

M = (M; J,) and N a global unit normal vector field on M. By V, S
we denote the Levi-Civita connection in M and the shape operator with
respect to N, respectively.

Then the Gauss and Weingarten formulas are given respectively by

VxY =VxY +g(SX,Y)N, VxN=-5X

for any vector fields X and Y tangent to M, where g denotes the
Riemann metric of M induced from g. An eigenvector(resp. eigenvalue)
of the shape operator S is called a principal curvature vector(resp.
principal curvature).

For any vector field X tangent to M, we put

JX = ¢X +n(X)N, JN=—¢. (4)

We easily see that the structure (7, £, ¢, g) is an almost contact metric
structure on M i.e. satisfies (1) and (2).
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From the condition VJ = 0, the relations (4) and by making use of the
Gauss and Weingarten formulas, we have

(Vxo)Y =n(Y)SX — g(SX, Y)E, (5)
Vx& = ¢SX. (6)

By using (5) and (6), we see that a real hypersurface in a Kahler
manifold always satisfies the CR-integrability condition.

Proposition 1.

A real hypersurface of a Kahler manifold admits an integrable CR-structure.

But, non-degeneracy of the Levi-form still remains not to be guaranteed.

A real hypersurface of a Kahler manifold is called a contact hypersurface
if M satisfies dn = p®, p # 0 (due to [Okumura]). Then we find that the
Levi-form of contact hypersurfaces is positive-definite (or
negative-definite).

@ M. Okumura, Contact hypersutfaces in certain Kaehlerian manifolds,
Tohoku Math. J. 18(2) (1966), 74-102.
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Here, we note

o Let M = (M;n,¢,£, g) be a real hypersurface of a Kihler manifold.
The almost contact metric structure of M is contact metric if and only if
PA+ Ap = £2¢.
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Contact hypersurfaces

Theorem 2.([Okumura], [Kon], [Vernon], [Suh], [Adachi-Kameda-Maeda])

Let M be a real hypersurface of a complex space form M,,(c). Then M is
contact if and only if M is locally congruent to one of the following:

(1) in case that M,(c) = P,C (with Fubini-Study metric),
(A1) a geodesic hypersphere of radius r, where 0 < r < e
(B) a tube of radius r over a complex quadric Qp,—1, where 0 < r < ENGL

(I1) in case that M,(c) = H,C (with Bergman metric),

(Ao) a horosphere,

(A1) a geodesic hypersphere or a tube over a complex hyperbolic hyper-
plane H,_;C,

(B) a tube over a totally real hyperbolic space H,R

(1) in case that M,(c) = E,C,

(A) S H(r),
(B) S"™(r) x R".
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@ M. Kon, Pseudo-Einstein real hypersurfaces of complex space forms,
J. Diff. Geometry 14 (1979), 339-354.

@ M. H. Vernon, Contact hypersutfaces in complex hyperbolic space,
Tohoku Math. J. 39 (1987), 215-222.

@ Y.J. Suh, On real hypersurfaces of a complex space form with
n-parallel Ricci tensor, Tsukuba J. Math. 14 (1990), 27-37.

[ T. Adachi, M. Kameda and S. Maeda, Real hypersurfaces which are
contact in a nonflat complex space form, Hokkaido Math. J. 40
(2011), 205-217.

Jong Taek Cho



The complex quadrics and the noncompact dual spaces

e The homogeneous quadratic equation zf + - -+ 4+ z2,, = 0 on C"*2
defines a complex hypersurface Q" in the (n + 1)-dimensional complex
projective space CP"1.

e The complex quadric Q" = SO,,2/50,50, admits the K3hler
structure (J, &) which is induced from CP™1,

e Another geometric structure is a rank two vector bundle A over Q"
which contains an S-bundle of real structures on the tangent spaces of
Q". The bundle A is just the family of shape operators with respect to
the normal vectors in the rank two normal bundle.
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Then

e Gauss equation for Q" C CP™1 implies that the Riemann curvature
tensor can be expressed by the Kahler structure (J, g) and a generic real
structure A in A.

e For a real structure A € A we denote by V/(A) its %—eigenspace; then

J~V(A) is the —%—eigenspace of A, where ¢ denotes the maximal
sectional curvature ¢ > 0.

e There are two types of singular tangent vectors: (i) if there exists a real
structure A € A such that W € V/(A), then W is singular. Such a
singular tangent vector is called A-principal. (ii) if there exist a real
structure A € A and orthonormal vectors X, Y € V/(A) such that
W/|IW|| = (X + JY)/V2, then W is singular. Such a singular tangent

vector is called A-isotropic.
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We should remark

e The noncompact dual space Q™ = 503’2/50,7502 is not realized as a
homogeneous complex hypersurface in the (n 4 1)-dimensional complex
hyperbolic space CH"*!,

For more details about the geometric structure of Q" or @™ and the

fundamental properties of their real hypersurfaces, we refer to
[BerndtSuh3,4], [KleinSuh].

@ J. Berndt and Y.J. Suh, Real hypersurfaces with isometric Reeb flow
in complex quadrics, Internat. J. Math. 24 (2013), 1350050 (18
pages).

@ S. Klein and Y.J. Suh, Contact real hypersurfaces in the complex
hyperbolic quadric, Ann. di Mat. Pure Appl. (2019).
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Due to a result of J. Berndt and Y.J. Suh and a result independently
done by T. H. Loo, we have the following theorem.

Theorem 3.

(I) Let M be a real hypersurface in the complex quadric Q" and n > 3.
Then M is a contact hypersurface if and only if M is locally congruent to

a tube of radius 0 < r < 7/+/2c around a real form S" of Q".

(I1) Let M be a real hypersurface in the noncompact dual Q™ of the
complex quadric and n > 3. Then M is a contact hypersurface if and only
if M is locally congruent one of the following:

(1) a tube of radius r € R around the totally geodesic Q=1 jn Qm*,
(2) a horosphere in Q™ whose center at infinity is determined by an A-
principal geodesic in Q"*,

(3) tube of radius r € Ry around a real form RH" in Q"*.

@ J. Berndt and Y.J. Suh, Contact hypersurfaces in Kahler manifolds,
Proc. Amer. Math. Soc. 142 (2014), 2637-2649.

@ T.H. Loo, A-Hopf hypersurfaces in complex quadrics, preprint
(arXiv:1712.00538 [math.DG]).
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Contact (k, u)-spaces

According to [BKP], a contact Riemannian manifold M is said to be a
contact (k, j1)-space if there exist (k, u) € R? such that

R(X,Y)§ = (kI 4 ph)(n(Y)X = n(X)Y)

for all X, Y € [(TM), where 2h = L¢¢. Then we have

o k <1 and the structure is Sasakian (h = 0) when k =1,
e the associated pseudo-Hermitian structure is CR-integrable.

[d D. E. Blair, T. Koufogiorgos and B. J. Papantoniou, Contact metric
manifolds satisfying a nullity condition, Israel J. Math. 91 (1995),
189-214.
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Classification

We have a fundamental theorem.
Theorem 4. (E. Boeckx)

Let (M2"tLp & ¢,g) and (M"2"tL /¢ ¢ g') be two non-Sasakian
(k, p)-spaces. Then they are locally isometric as contact metric spaces.
In particular, if both spaces are simply connected and complete, they are
globally isometric up to a pseudo-homothetic transformation.

Jong Taek Cho



Recall the gauge transformation (or pseudo-conformal transformation) f
of a contact metric manifold (pseudo-Hermitian strongly pseudo-convex
almost CR manifold, respectively) M. Given a contact form 7, we
consider a new contact form f*n = an for a positive function a. By
assuming J o f, = f, o J, then the associated structures are determined in
natural way (Lemma 9.1 in [Tanno]):

f.&=1(+(), (= Lolgrad a), pof. =Ff 09+ =n® (grad a— (£a)f),
frg=ag—ane@v+ren) +ala—1+|CIP)nen,

where v is dual to ¢ with respect to g.
Note that:

e g = f*g and g are conformally related for D.

e If a is constant, then f reduces to a D,-homothetic or
pseudo-homothetic transformation:

f*n=an, f.&= %f, pof,="fog, frfg=ag+ala—1)namn.
e For a =1, it includes an isometric (actually authomorphic)
transformation.
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Then we have

e the pseudo-homothetic deformation of a contact (k, ut)-space is another
contact (k, fi)-space with k = (k 4+ a> —1)/a® and ji = (i + 2a — 2)/a.
e k=1 and p = 2 are two invariants under pseudo-homothetic
deformation for all a # 1.

e The Boeckx invariant T of a non-Sasakian contact (k, uu)-space M is
defined by Z = (1 — /2)/+v/1 — k, which determines locally a contact
(k, p)-space, up to equivalence.

Theorem 5. (E. Boeckx)

Let (Mi;mi, &, di, &), i = 1,2, be two contact (k;, u;)-spaces of the same
dimension. Then Zy, = Zp, if and only if, up to a pseudo-homothetic
deformation of the contact metric structure, the two spaces are locally
equivalent as contact metric spaces. In particular, if both spaces are sim-
ply connected and complete, they are globally isometric up to a pseudo-
homothetic transformation.

[3 E. Boeckx, A full classifiation of contact metric (k, p)-spaces, lllinois
J. Math. 44 (2000), 212-219.
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Then we have

Theorem 6. ([Cho4])

The simply-connected, complete, non K-contact, contact Riemannian
space M is a (k, p)-space if and only if it is equivalent (up to a pseudo-
homothetic transformation) to one of (i), (i), (iii), (iv), and (v) in the
following table:
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] || real hypersurfaces | max(min)curv. [ Boeckx inv.

(i) || atube of radius r = \/garctan% € c>0 >1
(0,7/+/2c) around a real form S" of
Qn
(i) | R"x S™I(1/2) in C c=0 T=1
(i) || atubeof radiusr = /2 coth™* 22 | —4<c<0 | 0<I<1

el N

around a real form RH" in Q™

a tube of radius r = T2coth_1 V2 c=—-4 =0
around a real form RH" in Q™
a tube of radius r = % coth™! 2\|/§| —8<c<—-4 | -1<I<0
c
around a real form RH" in Q™
(iv) || a horosphere in @™ whose center c=-8 I=-1

at infinity is determined by an A-
principal geodesic in Q™

i - /2 -12v2 — _
(v) || atubeofradiusr =,/ 7 tanh el c< -8 I<-1
around @"~* in Q™
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Remarks. The case of Boeckx invariant Z = 1,0, —1, respectively has
the following remarkable characterization.

1. Due to the result of Boeckx and Cho [BoeckxCho?2] the case (ii)
R" x $"~1(4) in C" is the unique non-Sasakian simpy connected
Riemannian symmetric contact metric manifold.

2. In the case (iii), a tube of radius r = % log(v/2 4 1) around a real
form RH" in Q™ has specifically a nice CR-geometric property: it is
spherical ([Cho2]), that is, it is locally CR-equivalent to the sphere 5271
endowed with the standard CR structure as a real hypersurface of C”,
and moreover it has constant holomorphic sectional curvature A = 0 with
respect to the Tanaka-Webster connection V ([Cho1],[Cho3]). Also, it is
weakly n-Einstein ([ChoChunEuh]).

3. Other than the rigid Ricci soliton R” x $"1(4) in C" (the case (ii)),
the case (iv) a horosphere in @™ is only a non-Sasakian
simply-connected complete Ricci soliton in the class of contact

(k, p)-spaces, n > 3 ([CHKTT]).
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J.T. Cho, Geometry of contact strongly pseudo-convex
CR-manifolds, J. Korean Math. Soc. 43 (2006), 1019-1045.

J.T. Cho, Contact Riemannian manifolds with vanishing Gauge
invariant, Toyama Math. J. 31 (2008), 1-16.

J.T. Cho, Strongly pseudo-convex CR space forms, Complex
Manifolds 6 (2019), 279-293.

J.T. Cho, Contact hypersurfaces and CR-symmetry, Ann. Mat. Pura
Appl. 199 (2020), 1873-1884.

J.T. Cho, T. Hashinaga, A. Kubo, Y. Taketomi, H. Tamaru,
Realizations of some contact metric manifolds as Ricci soliton real
hypersurfaces. J. Geom. Phys. 123 (2018), 221-234.

) ) & &

[=)

E. Boeckx and J.T. Cho, Locally symmetric contact metric
manifolds, Monatsh. Math. 148 (2006), 269-281.

@ J.T. Cho, S.H. Chun, Yunhee Euh, Weakly n-Einstein contact
manifolds, Results Math. 77 (2022), 110, 16pp.
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CR-symmetric spaces

Recall

Definition 5. ([Kaup-Zaitsev])

Let (M;n,J) be a pseudo-Hermitian manifold with almost CR-structure
(n,J). Then a Webster metric g, is CR-symmetric if for each point p € M
there exists an isometric CR-diffeomorphism o : M — M such that

op(p) = p, (do)p(X) = —X forall X € D,.
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Notes.

1. Since the symmetry at p is uniquely determined, we may define the
local version in a natural way.

2. A (locally) CR-symmetric pseudo-Hermitian almost CR manifold is
automatically CR integrable because the symmetries are CR maps.

3. An isometric CR-diffeomorphism implies an automorphism of the
corresponding contact Riemannian structure (7, &, ¢, g) (cf.
[Dileo-Lotta]), indeed, the differential of o, at p is given by

(dop)p = —id + 21, ® &p.
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Theorem 7. ([Dileo-Lotta])

Let (M;n, J) be a pseudo-Hermitian manifold whose Webster metric g, is
not Sasakian. Then, the Webster metric g, is locally CR-symmetric if and
only if the underlying contact Riemannian manifold is a (k, ut)-space.

In proving this result, the following characterization of contact
(k, pt)-spaces makes an essential role.

Theorem 8. ([Boeckx-Cho])

A non K-contact, contact Riemannian space M is a (k, u)-space if and
only if h is n-parallel:
g((Vxh)Y,Z)=0

for all X, Y, Z € T(D).
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@ W. Kaup and D. Zaitsev, On symmetric Cauchy-Riemann manifolds,
Adv. Math. 149 (2000), 145-181.

@ G. Dileo and A. Lotta, A classification of spherical symmetric CR
manifolds, Bull. Austral. Math. Soc. 80 (2009), 251-274.

@ E. Boeckx and J.T. Cho, n-parallel contact metric spaces,
Differential Geom. Appl. 22 (2005), 275-285.
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For a Sasakian manifold, its associated pseudo-Hermitian CR structure is
(locally) CR-symmetric if and only if it is (locally) ¢-symmetric space in
the sense of Takahashi (|DileoLotta]). We have

Corollary 1. ([Cho4])

A contact strongly pseudo-convex almost CR manifold M = (M;n, J) is
(locally) CR-symmetric if and only if M is either a Sasakian (locally) ¢-
symmetric space or (locally) equivalent (up to a pseudo-homothetic trans-
formation) to one of (i), (ii), (iii), (iv) and (v) in the table of Theorem
9.
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Pseudo-Hermitian symmetry

Definition 6. ([BoeckxCho3])

Let (M;n,J) be a contact strongly pseudo-convex almost CR manifold.
Then M is said to be a locally pseudo-Hermitian symmetric space if all

characteristic V-reflections are local affine mappings, i.e., they preserve
the generalized Tanaka-Webster connection V. If any such characteristic
V-reflection is extendable as global affine transformation (with respect to
@) then we call M to be a globally pseudo-Hermitian symmetric space.

v
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Then we proved that a contact strongly pseudo-convex almost CR
manifold is locally pseudo-Hermitian symmetric space if and only if it is
either a Sasakian locally ¢-symmetric space or a non-Sasakian

(k, p)-space ([Theorem 14, BoeckxCho3]). Thus we have

A contact strongly pseudo-convex almost CR manifold M = (M;n, J) is
locally pseudo-Hermitan symmetric if and only if M is either a Sasakian
locally ¢-symmetric space or locally equivalent (up to a pseudo-homothetic
transformation) to one of (i), (ii), (iii), (iv) and (v) in the table of Theorem
6.
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Assume that (M;n, J) is complete and simply connected. Then, since a
complete and simply connected Sasakian locally ¢-symmetric space is a
globally ¢-symmetric space, at last we have

A complete and simply connected contact strongly pseudo-convex almost
CR manifold M = (M; n, J) is (globally) pseudo-Hermitan symmetric if and
only if M is either a Sasakian (globally) ¢-symmetric space or equivalent
(up to a pseudo-homothetic transformation) to one of (i), (i), (iii), (iv)
and (v) in the table of Theorem 6.

@ E. Boeckx and J.T. Cho, Pseudo-Hermitian symmetries, Israel J.
Math. 166 (2008), 125-145.

Jong Taek Cho



Spherical CR manifolds

e A spherical CR manifold is a contact strongly pseudo-convex CR
manifold which is locally CR-equivalent to the sphere S2"*! endowed
with the standard CR structure as a real hypersurface of C"+1.

e Spherical CR manifolds are characterized by C = 0, where C is the
Chern-Moser-Tanaka (pseudo-conformal) invariant tensor of type (1,3).
e The simply connected homogeneous spherical hypersurfaces of the
Euclidean space C"*! were classified by Burns and Shnider.

@ S. S. Chern and J. K. Moser, Real hypersurfaces in complex manifolds,
Acta Math. 133 (1974), 219-271.

[d D. Burns and S. Shnider, Spherical hypersurfaces in complex
manifolds, Inven. Math. 33 (1976), 223-246.
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The following theorem was proved in [DileoLotta].
Theorem 9.

Every complete and simply connected spherical CR-symmetric manifold
M2+l n > 2 is equivalent up to a pseudo-homothetic diffeomorphism,
to one of the following spaces: S2"*1, Heis®™*! B" xR, P}, --- ,P" |,
TiH™1(-1).

a G. Dileo and A. Lotta, A classification of spherical symmetric CR
manifolds, Bull. Austral. Math. Soc. 80 (2009), 251-274.
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The n—1 spaces P/, k =1,---,n— 1, denote the total space of a
principal fiber bundle P — CP* x CH"™ ¥, where the base space is the
product of complex projective space CP¥ with positive constant
holomorphic sectional curvature c(> 0) and complex hyperbolic space
CH"—* with negative constant holomorphic sectional curvature —c.
Those P}’s are not only Sasakian ¢-symmetric (due to
[JimenezKowalski]) but they are spherical since the base manifold is
Bochner flat (see [Bryant], [MatsumotoTanno]).

@ J. A. Jiménez and O. Kowalski, The classification of ¢-symmetic
Sasakian manifolds, Monatsh. Math. 115 (1993), 83-98.

@ R. L. Bryant, Bochner-Kahler metrics, J. Amer. Math. Soc. 14
(2001), 623-715.

[ M. Matsumoto and S. Tanno, Kahlerian spaces with parallel or
vanishing Bochner curvature tensor, Tensor (N.S.) 27 (1973),
291-294.
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We have the following facts:

e Since a geodesic sphere G2k*1(r) is a tube over a totally geodesic CP¥
in CPk+1 G2k+1(r) is a total space of a circle bundle over CP*, and
hence G2*T1(Z) x CH"~k(—4)(C CP*T1(4) x CH"~k(—4), as a real
hypersurface) is also regarded as a total space of a circle bundle over
CPk(4) x CH"=k(—4).

e For a tube T2*1(r) of radius r around CH* in CH**, we have a
principal fiber bundle T2<*1(r) x CP"k — CH*k*1 x CP"~k with the
structure group S*. In particular, T2A+1((*2 In(v/2 + 1)) x CP"X(8) is
realized as a real hypersurface of Hermitian symmetric space

CH**+1(—8) x CP"~k(8), which are Sasakian ¢-symmetic and at the
same time spherical.
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Then, we have the realizations of spherical CR-symmetric spaces as real
hypersurfaces in Hermitian symmetic spaces.

Theorem 10.

Every complete and simply connected spherical CR-symmetric manifold

M?2m+L n > 2 s either isometric to one of the following real hypersurfaces
in complex manifolds:

(/) a geodesic hypersphere G2"1(r) with r = % arctan(‘/TE) in

CP™1(c) (¢ > 0) (with constant ¢-sectional curvature H > 1),

(ii) a unit sphere $2"*1(1) in C"*1(0) (with constant ¢-sectional
curvature H = 1),

(iii) a geodesic hypersphere G2"+1(r) with r = J%fctanhfl(‘/?) in
CH™(c) (-4 < c < 0) (with =3 < H < 1),

(iv) a horosphere in CH"1(—4) (of constant holomorphic sectional
curvature —4) (with H = —3),

(v) atube T2"*1(r) of radius r = \/% coth™(*5<) around a totally

geodesic CH"(c) in CH""(c) (c < —4) (with H < —3),

y
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or equivalent, up to a pseudo-homothetic diffeomorphism, to

(vi) a real hypersurface G***1(%) x CH"%(—4) in
CP**1(4) x CH"=k(—4), where G2**1(r) denotes a tube of radius
r around totally geodesic CP* in CP**1(4), k =1,2,--- ,n—1,

(vii) a real hypersurface Tzk“(% In(v/2 4+ 1)) x CP"=%(8) in
CHk+1(—8) x CP"=k(8), where T2%*1(r) denotes a tube of radius
r around torally geodesic CH* in CH**(—8), k =1,2,--- ,n—1;

(viif) a tube of radius r = % In(v/2 + 1) around totally geodesic RH"+!

in the non-compact dual of complex quadric @"1*(—4) of minimal
curvature —4.

@ J. T. Cho and M. Kimura, Spherical CR-symmetric hypersurfaces in
Hermitian symmetric spaces, preprint.
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CR-symmetric contact 3-manifolds

e Every 3-dimensional contact strongly pseudo-convex CR manifold is
spherical.

e Blair and Vanhecke proved that a three-dimensional complete and
simply connected Sasakian locally ¢-symmetric space occurs only in
Sasakian space forms.
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Then, together with Corollary 1, we have
Theorem 11.
A complete and simply connected CR-symmetric contact 3-manifold M is

either isometric to one of the following real hypersurfaces in Hermitian
symmetric surfaces:

(i) a geodesic hypersphere G3(r) with r = \/ig arctan( %) in CP*(c)
(c > 0),
(ii) a unit sphere S3(1) in C2(0),

(iii) a geodesic hypersphere G3(r) with r = \/L_—Ctanhfl(\/?) -
CH?(c) (-4 < ¢ <0),
(iv) a horosphere in CH?(—4),

(v) atube T3(r) of radius r = \/L—T coth_l(‘?) around a totally
geodesic CH!(c) in CH?(c) (c < —4);
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or (globally) equivalent, up to a pseudo-homothetic diffeomorphism, to
one of the following real hypersurfaces in Hermitian symmetric surfaces:

(vi) a tube of radius r = \/>arctan f around a real form S2 of Q?(c),

where ¢ > 0 is maximal curvature of Q?,

(vii) R? x S*(3) in C?(0),

(viii) a tube of radius r =,/ T 2 coth™! % around totally a geodesic

RH? in the non-compact dual of complex quadric @%*(c), where
—8 < ¢ < 0 is minimal curvature,

(ix) a horosphere in @2*(—8) whose center at infinity is determined by
an A-principal geodesic in Q**(—8),

H _ 2 —1 22 .
(x) a tube of radius r = ,/ o7 tanh e around a totally geodesic

Q'™ in @**(c), where minimal curvature ¢ < —8.

Here, the above cases (i) - (v) are Sasakian, and the other cases (vi) - (x)
are non-Sasakian.
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Thank you for your attention !!




