

Hard Lefschetz Property for Isometric Flows and $\ensuremath{\mathbb{S}^3}\xspace$ -actions

José Ignacio Royo Prieto

Joint work with M.Saralegi-Aranguren (Univ. d'Artois) and R.Wolak (Univ. Jagiellonski)

University of the Basque Country UPV/EHU

Sasakian manifolds, Riemanniann foliations, and related topics. Jagiellonian University, Krakow, 26-28 june, 2023

Sketch of the talk

Symplectic Manifolds

- *M* closed C^{∞} manifold.
- dim *M* = 2*n*.
- We work with de Rham cohomology
- $\omega \in \Omega^2(M)$
- $d\omega = 0$ and $\omega^n \in \Omega^{2n}(M)$ volume form $\Longrightarrow [\omega^n]$ generates H^{2n}_M
- $H_M^0 = \langle 1 \rangle$
- $H_M^{2n} = \langle [\omega]^n \rangle$

Hard Lefschetz Property (HLP)

(M, ω) satisfies HLP if

$$\begin{array}{cccc} L^{n-k} \colon H^k_M & \longrightarrow & H^{2n-k}_M \\ & & & [\beta] & \longmapsto & [\beta \wedge \omega^{n-k}] \end{array}$$

are isomorphisms $\forall k = 0, \ldots, n$.

$$H_M^0 \quad H_M^1 \quad \dots \quad H^{2n} \dots \quad H_M^{2n-1} \quad H_M^{2n}$$
$$L^n = \wedge [\omega]^n L^{n-1} = \wedge [\omega]^{n-1} L^0 = id_M$$

Contact manifolds (flows)

- dim *M* = 2*n* + 1
- $\eta \in \Omega^1(M)$ contact form
- $\eta \wedge (d\eta)^n$ volume form of *M*.
- $\xi \in \mathfrak{X}(M)$ Reeb vector field
- $\eta(\xi) = 1$ and $L_{\xi}\eta = 0$.

HLP for isometric flows

HLP for flows on M^{2n+1}

- Capelleti-Montano et al., JDG 2015] Sasakian HLc
- [Lin Yi, arXiv 2016] K-contact THL ⇔ HL
- [RSW, TG 2022] Isometric $THL \iff HL$

Flows

- *M* closed manifold (of dimension M^{2n+1})
- \mathscr{F} is a flow (1 dimensional oriented foliation) over $M \Leftrightarrow X$ vector field $\Leftrightarrow \Phi \mathbb{R}$ -action
- ω basic if $i_X \omega = i_X d\omega = 0$.
- Basic cohomology H_B^* : "cohomology of the quotient space";

- Example: linear flows on tori.
- Example: linear flows on odd spheres.

Isometric Flows

An almost free action

$$\Phi \colon \mathbb{R} imes (M, \mu) \longrightarrow (M, \mu)$$

preserving a Riemannian metric μ on M.

Example:

- $M = \mathbb{T}^2 = \mathbb{R}^2 / \mathbb{Z}$
- Action $\Phi(t, [x, y]) = [at + x, bt + y]$ $(a^2 + b^2 = 1)$
- Equivalently, $X = a \frac{\partial}{\partial x} + b \frac{\partial}{\partial y}$

Gysin sequence for isometric flows

- $\chi = i_X \mu \in \Omega^1(M)$ characteristic form of the flow. $L_X \chi = 0$
- Euler form: $d\chi \in \Omega^2(M/\mathscr{F})$ basic form
- We have

$$\Omega^*(M/\mathscr{F})\oplus\Omega^{*-1}(M/\mathscr{F})\cong\Omega^*(M)^{\mathbb{R}}$$

 $(\alpha,\beta)\mapsto \alpha+\chi\wedge\beta$

which yields the (exact) Gysin sequence

$$\cdots \to H^{i}_{B} \to H^{i}_{M} \xrightarrow{\int = i_{X}} H^{i-1}_{B} \xrightarrow{\wedge [e]} H^{i+1}_{B} \to \dots$$

The connecting morphism is multiplication by the Euler class

$$[e] \in H^2_B.$$

Transverse Hard Lefschetz (THL) property for isometric flows

 \mathscr{F} satisfies the *Transversal Hard Lefschetz property* if the following maps are isomorphisms for k = 0, ..., n:

$$L^{n-k}: H^k_B \longrightarrow H^{2n-k}_B,$$

where

$$L^{n-k}([\beta]) = [\beta \wedge e^{n-k}].$$

(Global) Hard Lefschetz (HL) property for isometric flows [RSW]

• *F* satisfies the *(global) Hard Lefschetz property* if there exist isomorphisms

$$\mathscr{L}^{n-k}\colon H^k_M\longrightarrow H^{2n-k+1}_M$$

making the following diagram commutative:

for k = 0, ..., n.

Basic primitive cohomology group:

$$\mathcal{PH}_{\mathcal{B}}^{k} = \left\{ \left[\beta \right] \in \mathcal{H}_{\mathcal{B}}^{k} \mid \left[\beta \wedge e^{n-k+1} \right] = 0 \text{ in } \mathcal{H}_{\mathcal{B}}^{2n-k+2} \right\}.$$

Theorem (RSW, Transformation Groups 2022)

Let ${\mathscr F}$ be an isometric flow on a closed manifold of odd dimension. Then,

 $THL \iff HL$

Definition

An isometric flow on a closed manifold of odd dimension is said to be a *Lefschetz isometric flow* if it satisfies HL or, equivalently, THL.

 Being Lefschetz does NOT depend on the metric (Euler classes are proportional).

HL_c for contact manifolds [Cappeletti-Montano et.al, JDG 2015]

A contact manifold (M, η) with Reeb vector field ξ is a *Lefschetz contact* manifold if for every $k \leq n$, the relation between H_M^k and H_M^{2n+1-k} defined by

$$\mathcal{R}^{k} = \left\{ \left([\beta], [\eta \land (\boldsymbol{d}\eta)^{n-k}\beta] \right) \ \middle| \ \beta \in \Omega^{k}_{\boldsymbol{M}}, \boldsymbol{d}\beta = \boldsymbol{0}, \boldsymbol{i}_{\xi}\beta = \boldsymbol{0}, (\boldsymbol{d}\eta)^{n-k+1} \land \beta = \boldsymbol{0} \right. \right\}$$

is the graph of an isomorphism $H_M^k \cong H_M^{2n-k+1}$.

$HL_c \iff THL$ for K-contact [Lin Yi, arXiv 2016]

Theorem (Lin Yi, arXiv 2016)

For any K-contact flow on a closed manifold,

$$HL_c \iff THL_c$$

José Ignacio Royo Prieto (UPV/EHU)

Generalization

Proposition (RSW, 2022)

The isometric flow defined by the Reeb vector field of a K-contact manifold is an isometric Lefschetz flow if and only if it satisfies HL_c

Example of a Lefschetz non-contact isometric flow [RSW, TG 2022]

• Let $B = \mathbb{CP}^2 \sharp \mathbb{CP}^2$. Recall that its cohomology is given by:

$$\begin{split} H^0_B &= \mathbb{R} & H^2_B = < [a], [b] > = \mathbb{R} \oplus \mathbb{R} \\ H^1_B &= H^3_B = 0 & H^4_B = < [a]^2 > = < [b]^2 > = \mathbb{R}, \end{split}$$

- Take e = a and apply Kobayashi (a.k.a. Boothby-Wang).
- dim(M) = 5 with \mathbb{S}^1 -action and $[e] = [a] \in H^2_B$.
- *B* not symplectic (M.Audin) \implies *M* not contact.

$$L^2 \colon H^0(B) \xrightarrow{\wedge [a]^2} H^4(B) \qquad \qquad L^1 \colon H^1(B) \xrightarrow{\wedge [a]} H^3(B)$$

$$L^0: H^2(B) \xrightarrow{Id} H^2(B)$$

give THL.

۲

Almost free actions of S³

- *M* closed manifold of dimension 4n + 3
- Φ smooth almost free \mathbb{S}^3 -action on M.
- $B = M/S^3$ is an orbifold of dimension 4n.
- orbits define a foliation $\mathscr{F}_{\mathbb{S}^3}$ of dimension 3.
- Basic cohomology $H_B^* = H^*(M/\mathscr{F}_{S^3})$.

Actors of the Gysin sequence

- X_i , i = 1, 2, 3 the three fundamental vector fields of the \mathbb{S}^3 -action.
- \mathbb{S}^3 -invariant metric μ .

۵

٢

• dual characteristic forms are $\chi_i = i_{X_i}\mu$.

$$d\chi_1 = e_1 - \chi_2 \wedge \chi_3$$
$$d\chi_2 = e_2 + \chi_1 \wedge \chi_3$$
$$d\chi_3 = e_3 - \chi_1 \wedge \chi_2$$

- e_i is \mathscr{F}_i -basic (the Euler form of the \mathbb{S}^1 -action-flow \mathscr{F}_i).
- $e_i \in \Omega^2(M)$ are \mathbb{S}^3 -horizontal forms, but not $\mathscr{F}_{\mathbb{S}^3}$ -basic.

$$d(\overbrace{e_{1}\chi_{1}+e_{2}\chi_{2}+e_{3}\chi_{3}}^{\theta}) = \overbrace{e_{1}^{2}+e_{2}^{2}+e_{3}^{2}}^{\Omega} + d(\chi_{1}\chi_{2}\chi_{3})$$

• The Euler form of $\Omega = e_1^2 + e_2^2 + e_3^2$ is $\mathscr{F}_{\mathbb{S}^3}$ -basic.

• $[\Omega] \in H^4_B$ is the *Euler class* of Φ .

Gysin sequence of Φ

• The classical Gysin sequence for free $\mathbb{S}^3\mbox{-}actions$ works if the action is almost-free.

$$\cdots \to H^{i}_{B} \stackrel{\iota}{\longrightarrow} H^{k}_{M} \stackrel{\int}{\longrightarrow} H^{k-3}_{B} \stackrel{L}{\longrightarrow} H^{k+1}_{B} \stackrel{\iota}{\longrightarrow} H^{k+1}_{M} \to \ldots$$

- ι is induced by the inclusion
- \int is the operator $i_{X_1}i_{X_2}i_{X_3}$

• the connecting morphism *L* is the multiplication by the Euler class [Ω].

Hard Lefschetz Property (THL) for Φ

- $L: H_B^* \to H_B^{*+4}$ multiplication by the Euler class.
- We say that Φ safisfies THL if

$$L^{n-k} \colon H^{2k}_B \longrightarrow H^{4n-2k}_B$$

defined as $L^{n-k}([\alpha]) = [\alpha \land \Omega^{n-k}]$, is an isomorphism for k = 0, ..., n.

$$\begin{aligned} H^0_B & H^1_B & H^1_B & \dots \\ H^{2n}_B & \dots \\ H^{2n}_B & \dots \\ H^{4n-2}_B & H^{4n-1}_B & H^{4n}_B \\ L^n &= \wedge [\Omega]^n L^{n-1} = \wedge [\Omega]^{n-1} L^0 = id \end{aligned}$$

٢

(global) Hard Lefschetz Property (HL) for Φ

• The Primitive basic cohomology group of dimension 2k is

$$P\!H_B^{2k} = \{ [\beta] \in H_B^{2k} \mid [\beta \land \Omega^{n-k+1}] = 0 \}$$

Φ safisfies *HL* if there exist isomorphisms *L^{n-k}*: *H^{2k}_M* → *H^{4n-2k+3}_M* such that the following diagram is commutative for *k* = 0,..., *n*:

where i_k is induced by the inclusion of forms.

Equivalence of THL and HL for Φ

Φ satisfies the *injectivity condition* if the multiplication by the Euler class induces a monomorphism: L: H^{2k-3}_B → H^{2k+1}_B for k = 0,..., n.

Theorem (RSW)

Let Φ be an almost free smooth action of \mathbb{S}^3 on a closed manifold of dimension 4n + 3 satisfying the injectivity condition. Then, it satisfies HL if and only if it satisfies THL.

3-Sasakian manifolds

- Consider the almost free action of \mathbb{S}^3 induced by a 3-Sasakian structure.
- The small basic Betti numbers are zero:

$$b_B^{2k+1}=0, \ \forall k=0,1,\ldots,n$$

 \implies injectivity condition.

Corollary (RSW)

3-Sasakians satisfy THL and HL.

HLP for S3-actions

Example of a Lefschetz \mathbb{S}^3 -action not 3-Sasakian [RSW]

- There are infinitely many distinct free smooth actions of \mathbb{S}^3 on $M = \mathbb{S}^{11}$ ([Hsiang, Q.J.M.Ox., 1964])
- There are only a finite amount of 3-Sasakian structures on S¹¹ [Boyer,Galicki]
- So, take Φ an action that is not 3-Sasakian (there are infinitely many!)
- Gysin sequence \implies injectivity condition for all free actions on \mathbb{S}^{11} .
- So, Φ is Lefschetz (both HL and THL), but not 3-Sasakian.

J. I. Royo, M. Saralegi-Aranguren, R. Wolak, *Hard Lefschetz Property for Isometric Flows*, Transformation Groups, 2022 www.ehu.eus/joseroyo