A trace formula for foliated flows

Jesús A. Álvarez López

University of Santiago de Compostela and CITMAga

Joint work with Yuri Kordyukov (Ufa) e Eric Leichtnam (París)

Sasakian manifolds, Riemannian foliations, and related topics Jagiellonian University, Kraków, June 26–28, 2023

Contents

1

- Problem of the trace formula and previous work
- Simple foliated flows
- Problem of the trace formula
- Case without preserved leaves

General case

- Conormal distributions
- Dual-conormal distributions
- Conormal distributions supported in L
- Restriction of the conormal distributions to M¹
- Other dual spaces
- Conormal and dual-conormal leafwise currents

Foliated flows

- M a closed manifold. \mathcal{F} a foliation of codimension 1 on M.
- $\phi = \{\phi^t\}$ a foliated flow on M: ϕ^t : leaves \rightarrow leaves.
- Preserved leaves: $\phi^t : L \mathfrak{S}$
- $M^0 = \bigcup$ (preserved leaves), saturated, closed.
- $\bullet \ \ M^1 = M \setminus M^0, \quad \text{saturated, open,} \quad \mathcal{F}^1 = \mathcal{F}|_{M^1}.$
- Σ : a complete transversal of \mathcal{F} .
- \mathcal{H} : holonomy pseudogroup of \mathcal{F} on Σ (transverse dynamics of \mathcal{F}).
- ϕ foliated \rightsquigarrow local flow $\overline{\phi} = \{\overline{\phi}^t\}$ on Σ , \mathcal{H} -equivariant.
- {preserved leaves} \leftrightarrow {H-orbits of points fixed by $\overline{\phi}$ }, $L \mapsto L \cap \Sigma$.

Simple foliated flows

The foliated flow ϕ is called simple if:

- The fixed points $p \in \Sigma$ of $\overline{\phi}$ are simple:
 - id $-\bar{\phi}_*^t$: $T_p \Sigma \equiv \mathbb{R} \odot^{\cong}$ for $|t| \neq 0$ small.
 - $\rightsquigarrow \exists \varkappa \neq 0 \text{ s.t. } \bar{\phi}^t_* \equiv e^{\varkappa t} : T_p \Sigma \equiv \mathbb{R} \bigcirc.$
 - \mathcal{H} -equivariance of $\phi \quad \rightsquigarrow \varkappa = \varkappa_L$ where $L = L_p \subset M^0$.

•
$$\rightsquigarrow M^0 = \bigcup_{\text{finite}} (\text{compact leaves}).$$

- $\ \ \, @ \ \ \phi \pitchfork \mathcal{F} \ \, \text{on} \ \, M^1.$
- **③** The closed orbits $c \subset M^1$ are simple:
 - \forall period $\ell \neq 0$, $\forall x \in c$, $\mathrm{id} \phi_*^\ell : N_x c \equiv T_x \mathcal{F} \mathfrak{S}^{\cong}$.
 - $\rightsquigarrow \epsilon_{\ell}(c) = \operatorname{sign} \operatorname{det}(\operatorname{id} \phi_*^{\ell} : T_x \mathcal{F} \circlearrowright).$
 - $\ell(c) = \min\{\text{positive periods of } c\}, \text{ other periods: } k\ell(c) \quad (k \in \mathbb{Z}).$

The foliations with simple foliated flows can be described . . . (Kim-Masanori-Noda-Terashima 2020, Á.-Kordyukov-Leichtnam 2022).

Simple foliated flows

A simple example

Reduced leafwise cohomology

- Exterior bundles over *M*: $\Lambda M = \bigwedge T^*M$, $\Lambda \mathcal{F} = \bigwedge T^*\mathcal{F}$.
- C[∞](M; ΛF) = {leafwise forms}, with the C[∞] topology, a topological vector space;
 a locally convex space (LCS);
 in fact, a Fréchet space.
- The leafwise differential operator $d_{\mathcal{F}} : C^{\infty}(M; \Lambda \mathcal{F}) \mathfrak{S}$ is continuous, $\rightsquigarrow (C^{\infty}(M; \Lambda \mathcal{F}), d_{\mathcal{F}})$ is a topological complex.
- → leafwise cohomology: H[•](F) a possibly non-Hausdorff LCS (the differential complex d_F is not elliptic, only leafwise elliptic).
- Leafwise reduced cohomology: $\overline{H}^{\bullet}(\mathcal{F}) = H^{\bullet}(\mathcal{F})/\overline{0}$ Hausdorff LCS.

•
$$\rightsquigarrow \phi^* = \{\phi^{t*}\}$$
 on $H^{\bullet}(\mathcal{F})$ and $\overline{H}^{\bullet}(\mathcal{F})$.

• It is invariant by leafwise homotopy equivalences of foliated flows.

Problem of the trace formula for simple foliated flows

Problem (C. Deninger 2001, Guillemin-Sternberg 1977 (partly))

- Define a "Leftschetz distribution" $L_{dis}(\phi^t)$ on \mathbb{R} for ϕ^{t*} on $\overline{H}^{\bullet}(\mathcal{F})$. $L_{dis}(\phi^t) \in C^{-\infty}(\mathbb{R})$.
- Prove a trace formula describing $L_{dis}(\phi^t)$ in terms of the data from the closed orbits and preserved leaves.
- It should be similar to Weil's explicit formula in Arithmetics.

Condition of transverse orientability

- Assume \mathcal{F} is transversely oriented (for simplicity, not needed!): $N\mathcal{F} = TM/T\mathcal{F}$ is oriented, $\Leftrightarrow N\mathcal{F}$ is trivial.
- $\Leftrightarrow \exists \omega \in C^{\infty}(M, \Lambda^1 M)$ s.t. $T\mathcal{F} = \ker \omega$.
- $\exists \eta \in C^{\infty}(M; \Lambda^1 M)$ s.t. $d\omega = \eta \wedge \omega$ (integrability of $T\mathcal{F}$).
- $\eta \equiv \eta|_{\mathcal{F}} \in C^{\infty}(M; \Lambda \mathcal{F}), \quad d_{\mathcal{F}}\eta = 0, \quad \rightsquigarrow \xi = [\eta] \in H^1(\mathcal{F}).$
- ξ is determined by \mathcal{F} , but we can choose any $\eta \in \xi$.
- \rightsquigarrow the normal bundle NM^0 is also trivial.
- \rightsquigarrow a trivial tubular neighborhood of M^0 : $T \equiv M^0 \times (-\epsilon, \epsilon)_{\rho}$.
- We can choose η and ρ such that $d_{\mathcal{F}}\rho = \rho\eta$.
- $\phi \pitchfork \mathcal{F}^1 \longrightarrow \mathcal{F}^1$ is always transversely oriented by ϕ .

Case without preserved leaves

- Assume $\not\exists$ preserved leaves $(M^0 = \emptyset)$.
- $\rightsquigarrow \mathcal{F}$ is Riemannian: it is locally defined by Riemannian submersions for some Riemannian metric on M (a bundle-like metric).
- \Leftrightarrow $d\omega = 0$ ($\eta = 0$, ω is an invariant transverse volume form).
- $\rightsquigarrow \delta_{\mathcal{F}} = d_{\mathcal{F}}^*$, $\Delta_{\mathcal{F}} = d_{\mathcal{F}}\delta_{\mathcal{F}} + \delta_{\mathcal{F}}d_{\mathcal{F}}$ on $C^{\infty}(M; \Lambda \mathcal{F})$, in $L^2(M; \Lambda \mathcal{F})$, (leafwise coderivative/Laplacian).
- $\Delta_{\mathcal{F}}$ is self-adjoint in $L^2(M; \Lambda \mathcal{F})$.
- \rightsquigarrow leafwise heat operator $e^{-t\Delta_{\mathcal{F}}}$ on $L^2(M; \Lambda \mathcal{F})$ $(0 < t \le \infty)$ $\Pi_{\mathcal{F}} = e^{-\infty\Delta_{\mathcal{F}}}$ is the orthogonal projection to ker $(\Delta_{\mathcal{F}} \text{ in } L^2(M; \Lambda \mathcal{F})).$

Case without preserved leaves

Theorem (Å.-Kordyukov 2001)

$$(\alpha, t) \mapsto e^{-t\Delta_{\mathcal{F}}} \alpha$$
 defines a smooth map
 $C^{\infty}(M; \Lambda \mathcal{F}) \times [0, \infty] \to C^{\infty}(M; \Lambda \mathcal{F})$.
 $\rightsquigarrow \overline{H}^{\bullet}(\mathcal{F}) \cong \ker(\Delta_{\mathcal{F}} \text{ in } C^{\infty}(M; \Lambda \mathcal{F})).$

J. Álvarez (USC)

June 2023 13 / 58

Case without preserved leaves

• For
$$f\in \mathit{C}^\infty_c(\mathbb{R})$$
, let

$$P_f = \int_{\mathbb{R}} \phi^{t*} \cdot f(t) \, dt \circ \Pi_{\mathcal{F}} \quad \text{on} \quad C^{\infty}(M; \Lambda \mathcal{F}) \; .$$

• $\omega \rightsquigarrow$ Connes' Euler characteristic (Connes 1979):

$$\chi_{\omega}(\mathcal{F}) = \int_{\mathcal{M}} (\text{leafwise Euler density}) \cdot \omega \; .$$

Theorem (Á.-Kordyukov 2002)

P_f is a smoothing operator, → it is of trace class.
L_{dis}(φ) := (f → Str P_f) ∈ C^{-∞}(ℝ).
L_{dis}(φ) = χ_ω(F) δ₀ + ∑_c ℓ(c) ∑_{k≠0} ε_c(kℓ(c)) δ_{kℓ(c)}.

Idea of the proof

•
$$P_{u,f} = \int_{\mathbb{R}} \phi^{t*} \cdot f(t) \, dt \circ e^{-u\Delta_{\mathcal{F}}} \quad \forall u \in (0,\infty].$$

• $P_{\mu,f}: C^{-\infty}(M; \Lambda \mathcal{F}) \to C^{\infty}(M; \Lambda \mathcal{F})$ is continuous (smoothing).

• \rightsquigarrow its Schwartz kernel $K_{u,f}(p,q)$ is C^{∞} on $M \times M$,

•
$$(P_{u,f}\alpha)(x) = \int_M K_{u,f}(p,q)\alpha(y)$$
, Str $P_{u,f} = \int_M \operatorname{str} K_{u,f}(p,p)$.

• $\lim_{u \downarrow 0} \operatorname{Str} P_{u,f} = \chi_{\omega}(\mathcal{F}) f(0) + \sum_{c} \ell(c) \sum_{k \neq 0} \epsilon_{c}(k\ell(c)) f(k\ell(c)) .$

u. 0

•
$$\operatorname{Tr}[A, B] = 0 \rightsquigarrow \frac{d}{du} \operatorname{Str} P_{u,f} = 0$$
.
• $\rightsquigarrow \operatorname{Str} P_f = \lim_{u \uparrow \infty} \operatorname{Str} P_{u,f} = \lim_{u \downarrow 0} \operatorname{Str} P_{u,f}$ = the above formula.

Another leafwise complex is needed

- Suppose \exists preserved leaves $(M^0 \neq \emptyset)$.
- For simplicity, assume for a while $M^0 = L$, only one preserved leaf.
- \rightsquigarrow ($C^{\infty}(M; \Lambda \mathcal{F}), d_{\mathcal{F}}$) does not work!
- The dual complex (C^{-∞}(M; ΛF), d_F) of leafwise currents does not work either.
- $\bullet \, \rightsquigarrow$ another leafwise complex is needed.
- ~> deeper Functional Analysis.
- $\rightsquigarrow L_{dis}(\phi)$ will be given by the action ϕ^* on 2 leafwise reduced cohomologies at the same time, $\overline{H}^{\bullet}I(\mathcal{F})$ and $\overline{H}^{\bullet}I'(\mathcal{F})$.

Distributions

- ΩM : the density bundle.
- C^{-∞}(M) = C[∞](M; ΩM)' = {distributions}.
 (We consider continuous dual spaces with the strong topology.)
- C[∞](M) ⊂ C^{-∞}(M) continuous, dense.
 (All inclusions of LCS considered here are continuous.)
- With more generality, we can consider spaces of special distributional sections of a vector bundle $E \to M$, like $C^{-\infty}(M; E)$. But their study can be reduced to corresponding spaces of distributions; e.g.,

$$C^{-\infty}(M; E) \equiv C^{-\infty}(M) \otimes_{C^{\infty}(M)} C^{\infty}(M; E)$$
.

 $\bullet \rightsquigarrow$ for simplicity, we first study spaces of distributions.

Sobolev spaces

- Diff(*M*): differential operators on $C^{\infty}(M)$, also on $C^{-\infty}(M)$.
- Sobolev space of order $s \in \mathbb{N}_0$:

$$H^{s}(M) = \{ u \in C^{-\infty}(M) \mid \mathsf{Diff}^{s}(M) \cdot u \subset L^{2}(M) \},\$$

with the coarser topology s.t. $P : H^s \to L^2$ is cont. $\forall P \in \text{Diff}^s(M)$. (We always consider this kind of topology for spaces defined like this.)

• For $s \in \mathbb{R}$, the definition of $H^s(M)$ is similar but more involved ...

•
$$s < s' \Rightarrow H^s(M) \supset H^{s'}(M)$$
 dense

• $\bigcup_{s} H^{s}(M) = C^{-\infty}(M), \quad \bigcap_{s} H^{s}(M) = C^{\infty}(M).$

(All unions/intersections of inductive systems of inclusions of LCS are endowed with the inductive/projective locally convex topologies.)

• If *M* is not compact, then $H^{s}(M)$ depends on the choice of a metric, \rightsquigarrow unions/intersections $H^{\pm\infty}(M) \subset C^{\pm\infty}(M)$.

Conormal distributions

- Distributions with nice singularities at $M^0 = L$.
- $\mathfrak{X}(M, L) = \{ X \in \mathfrak{X}(M) \mid X \text{ tangent to } L \}.$
- \rightsquigarrow Diff $(M, L) \subset$ Diff(M).
- Distributions conormal at *L* of Sobolev order *s*:

 $I^{(s)}(M,L) = \{ u \in H^{s}(M) \mid \mathsf{Diff}(M,L) \cdot u \subset H^{s}(M) \},\$

with the topology defined as above

- $s < s' \Rightarrow I^{(s)}(M,L) \supset I^{(s')}(M,L).$
- Distributions conormal at L: $I(M, L) = \bigcup I^{(s)}(M, L)$.

•
$$C^{-\infty}(M) \supset I(M,L) \supset C^{\infty}(M)$$
 dense.

Conormal distributions (contd.)

Theorem (Á.-Kordyukov-Leichtnam 2023)

I(M, L) is barreled, ultrabornological, webbed, acyclic Montel space, \rightsquigarrow complete, boundedly retractive and reflexive. (It is a decent LCS.)

• The proof uses Homological Theory of LCSs.

Dual-conormal distributions

- $I'(M, L) = I(M, L; \Omega M)' = \{$ dual-conormal distributions $\}$.
- $C^{-\infty}(M) \supset I'(M,L) \supset C^{\infty}(M).$
- $l'^{(s)}(M,L) = l^{(-s)}(M,L;\Omega M)'.$
- $s < s' \Rightarrow l'^{(s)}(M, L) \leftarrow l'^{(s')}(M, L)$ (restriction maps).

- I'(M, L) is a complete Montel space.
- $I'(M,L) = \varprojlim I'^{(s)}(M,L) \quad as \quad s \downarrow -\infty.$

$$I(M,L) \cap I'(M,L) = C^{\infty}(M).$$

Conormal distributions supported in L

• $K(M, L) = \{ u \in I(M, L) | \text{supp } u \subset L \} \subset I(M, L)$ with the subspace topology.

•
$$\mathcal{K}^{(s)}(M,L) \subset I^{(s)}(M,L)$$
 similar.

•
$$K(M, L)$$
 satisfies the same properties as $I(M, L)$.

$$K(M,L) = \bigcup_{s} K^{(s)}(M,L).$$

Description of K(M, L)

•
$$C^{\infty}(L; \Omega^{-1}NL) \subset K(M, L)$$
:

$$\langle u,v\rangle = \int_L uv , \quad u \in C^\infty(L;\Omega^{-1}NL), \ v \in C^\infty(M;\Omega M) .$$

•
$$K(M,L) \supset \partial_{\rho}^{m} C^{\infty}(L; \Omega^{-1}NL) \stackrel{\partial_{\rho}^{m}}{\cong} C^{\infty}(L; \Omega^{-1}NL) \stackrel{\omega}{\cong} C^{\infty}(L).$$

$$\mathcal{K}(M,L) = \bigoplus_{m=0}^{\infty} \partial_{\rho}^{m} C^{\infty}(L; \Omega^{-1}N) \cong \bigoplus_{m=0}^{\infty} C^{\infty}(L) .$$

Cutting M along L

• Cut *M* along *L*, \rightsquigarrow **M**, \mathcal{F} , ∂ **M** \equiv *L* \sqcup *L*, $\mathring{\mathbf{M}} \equiv M^1$, $\mathring{\mathcal{F}} = \mathcal{F}|_{\mathring{\mathbf{M}}} \equiv \mathcal{F}^1$, ω , η , $\mathbf{T} \equiv \partial$ **M** $\times [0, \epsilon)_{\rho} \equiv (L \times (-\epsilon, 0]_{\rho}) \sqcup (L \times [0, \epsilon)_{\rho}).$

•
$$\exists$$
 an extension $ho \in C^\infty(\mathsf{M})$ s.t.:

• $\rho \ge 0$, $\partial \mathbf{M} = \{\rho = 0\}$, $d\rho \ne 0$ on $\partial \mathbf{M}$ (boundary defining function),

•
$$\boldsymbol{\rho} \equiv |\rho|$$
 on **T**,

- $d_{\mathcal{F}}\rho = \rho\eta$.
- $\mathring{\mathcal{F}} \equiv \mathcal{F}^1$ has a bundle-like metric \mathbf{g}_b of bounded geometry (a Riemannian foliation of bounded geometry).

Restriction of the conormal distributions to M^1

• $J(M, L) = \{ u|_{M^1} \mid u \in I(M, L) \} \subset C^{\infty}(M^1) \equiv C^{\infty}(\mathring{M}).$ • $\forall m \in \mathbb{R}$, let

$$J^{m}(M, L) \equiv \{ u \in C^{\infty}(\mathring{\mathbf{M}}) \mid \mathsf{Diff}(M, L) \cdot u \subset \rho^{m} L^{\infty}(\mathring{\mathbf{M}}) \} ,$$

with the topology defined as before

- $J(M,L) = \bigcup_{m} J^{m}(M,L)$ (R. Melrose), \rightsquigarrow a LCS.
- The restriction map $R: I(M, L) \rightarrow J(M, L)$ is continuous.

Properties of J(M, L)

Theorem (Á.-Kordyukov-Leichtnam 2023)

J(M, L) satisfies the same properties as I(M, L).

Theorem (R. Melrose 1996, Á.-Kordyukov-Leichtnam 2023)

The following is a short exact sequence in the category of continuous linear maps between LCSs:

$$0 \to K(M,L) \xrightarrow{\iota} I(M,L) \xrightarrow{R} J(M,L) \to 0$$
.

Description of J(M, L)

- \mathbf{g}_{b} of bounded geometry on $\mathbf{\mathring{M}} \longrightarrow H^{\pm\infty}(\mathbf{\mathring{M}})$.
- $\rho^{\mu} H^{\pm \infty}(\mathring{\mathbf{M}})$ LCS s.t. $\rho^{\mu} : H^{\pm \infty}(\mathring{\mathbf{M}}) \xrightarrow{\cong} \rho^{\mu} H^{\pm \infty}(\mathring{\mathbf{M}}) \quad (\mu \in \mathbb{R}).$ • $\mu < \mu' \Rightarrow \rho^{\mu} H^{\pm \infty}(\mathring{\mathbf{M}}) \supset \rho^{\mu'} H^{\pm \infty}(\mathring{\mathbf{M}}).$

Theorem (Á.-Kordyukov-Leichtnam 2023) $J(M,L) \equiv \bigcup_{\mu} \rho^{\mu} H^{\infty}(\mathbf{\mathring{M}}).$

Other dual spaces

- $K'(M, L) = K(M, L; \Omega M)', \quad J'(M, L) = J(M, L; \Omega M)'.$
- $K'^{(s)}(M, L)$, $J'^{m}(M, L)$, similar.

- K'(M, L) and J'(M, L) satisfy the same properties as I'(M, L).
- The following transposed sequence is exact in the category of continuous linear maps between LCSs:

$$0 \leftarrow K'(M,L) \xleftarrow{\iota^t} I'(M,L) \xleftarrow{R^t} J'(M,L) \leftarrow 0 \; .$$

Description of K'(M, L)

• Recall:

$$\mathcal{K}(M,L;\Omega M)\supset \partial_{\rho}^{m}C^{\infty}(L;\underbrace{\Omega^{-1}NL\otimes\Omega M}_{\Omega L})\cong C^{\infty}(L;\Omega L).$$

• ~> a projection (transposing)

$$\mathcal{K}'(M,L) o \partial_{\rho}^{m} \mathcal{C}^{-\infty}(L) \stackrel{\partial_{\rho}^{m}}{\cong} \mathcal{C}^{-\infty}(L) \;.$$

$$\mathcal{K}'(M,L) = \prod_{m=0}^{\infty} \partial_{\rho}^m C^{-\infty}(L;\Omega L) \cong \prod_{m=0}^{\infty} C^{-\infty}(L)$$

Description of J'(M, L)

Transposing
$$J(M, L) \equiv \bigcup_{\mu} \rho^{\mu} H^{\infty}(\mathbf{\mathring{M}})$$
, we get:
Theorem (Á.-Kordyukov-Leichtnam 2023)
 $J'(M, L) \equiv \bigcap_{\mu} \rho^{\mu} H^{-\infty}(\mathbf{\mathring{M}})$

٠

Conormal and dual-conormal leafwise currents

- Now M^0 may have several leaves L.
- I(F) = I(M, M⁰; ΛF), K(F), J(F), I'(F), K'(F), J'(F) have the same properties as before.
- All of them are topological complexes with $d_{\mathcal{F}}$.
- \rightsquigarrow leafwise cohomologies $H^{\bullet}I(\mathcal{F}), H^{\bullet}K(\mathcal{F}), H^{\bullet}J(\mathcal{F}), H^{\bullet}I'(\mathcal{F}), H^{\bullet}I'(\mathcal{F}), H^{\bullet}I'(\mathcal{F})$.
- \rightsquigarrow leafwise reduced cohomologies $\overline{H}^{\bullet}I(\mathcal{F}), \ \overline{H}^{\bullet}K(\mathcal{F}), \ \overline{H}^{\bullet}J(\mathcal{F}), \ \overline{H}^{\bullet}I(\mathcal{F}), \ \overline{H}^{\bullet}K(\mathcal{F}), \ \overline{H}^{\bullet}J(\mathcal{F}).$
- $\rightsquigarrow \phi^* = \{\phi^{t*}\}$ on all of them.
- Invariant by leafwise homotopies of flows.

•
$$\rightsquigarrow$$
 we can assume $\phi^t = \text{id on } M^0$.

٠

Description of $K(\mathcal{F})$

• For preserved leaves $L \subset M^0$,

$$\partial_{\rho}^{m} C^{\infty}(L; \Lambda L \otimes \Omega^{-1} NL) \equiv C^{\infty}(L; \Lambda L) ,$$

 $d_{\mathcal{F}} \equiv d_{L} - (m+1) \eta \wedge , \quad \phi^{t*} \equiv e^{-(m+1) \varkappa_{L} t}$

•
$$d_{L,-k} = d_L - k \eta \wedge \quad (k = m + 1 \ge 1)$$
 (Witten's type perturbation).

•
$$\rightsquigarrow$$
 $H^{\bullet}_{-k}(L), \quad \beta^{r}_{-k}(L), \quad \chi_{-k}(L) = \chi(L).$

• Then

$$\begin{split} \mathcal{K}(\mathcal{F}) &\equiv \bigoplus_{L} \bigoplus_{k=1}^{\infty} \mathcal{C}^{\infty}(L; \Lambda L) \;, \\ d_{\mathcal{F}} &\equiv \bigoplus_{L} \bigoplus_{k=1}^{\infty} d_{L,-k} \;, \quad \phi^{t*} \equiv \bigoplus_{L} \bigoplus_{k=1}^{\infty} e^{-k \varkappa_{L} t} \;. \end{split}$$

Description of $H^{\bullet}K(\mathcal{F})$

Corollary (Á.-Kordyukov-Leichtnam 2023)

$$\mathcal{H}^{ullet}\mathcal{K}(\mathcal{F}) = \bar{\mathcal{H}}^{ullet}\mathcal{K}(\mathcal{F}) \equiv \bigoplus_{L} \bigoplus_{k=1}^{\infty} \mathcal{H}^{ullet}_{-k}(L) , \quad \phi^{t*} \equiv \bigoplus_{L} \bigoplus_{k=1}^{\infty} e^{-k \varkappa_{L} t} .$$

• Renormalizing, it makes some sense to define:

$$L_{\mathrm{dis},\mathcal{K}}(\phi) = \sum_{\varkappa_L t > 0} \chi(L) \sum_{k=1}^{\infty} e^{-k \varkappa_L t} = \sum_{\varkappa_L t > 0} \frac{\chi(L)}{e^{\varkappa_L t} - 1} \in C^{\infty}(\mathbb{R}^{\times}) .$$

Description of $H^{\bullet}K'(\mathcal{F})$

Similarly, using that
$$H_m^r(L)' \cong H_{-m}^{\dim(L)-r}(L)$$
:

Corollary (Á.-Kordyukov-Leichtnam 2023)

$$H^{\bullet}K'(\mathcal{F}) \equiv \overline{H}^{\bullet}K'(\mathcal{F}) \equiv \bigoplus_{L} \prod_{k=0}^{\infty} H^{\bullet}_{k}(L) , \quad \phi^{t*} \equiv \bigoplus_{L} \prod_{k=0}^{\infty} e^{k \varkappa_{L} t}$$

• Renormalizing again, it makes some sense to define:

$$\mathcal{L}_{\mathrm{dis},\mathcal{K}'}(\phi) = \sum_{\varkappa_L t < 0} \chi(L) \sum_{k=0}^{\infty} e^{k \varkappa_L t} = \sum_{\varkappa_L t < 0} \frac{\chi(L)}{1 - e^{\varkappa_L t}} \in C^{\infty}(\mathbb{R}^{\times}) .$$

43 / 58

Contribution from $H^{\bullet}K(\mathcal{F})$ and $H^{\bullet}K'(\mathcal{F})$

• \rightsquigarrow it makes some sense to define:

$$L_{\mathrm{dis},\mathcal{K},\mathcal{K}'}(\phi) = L_{\mathrm{dis},\mathcal{K}}(\phi) + L_{\mathrm{dis},\mathcal{K}'}(\phi) = \sum_{L} \frac{\chi(L)}{|e^{\varkappa_L t} - 1|} \in C^{\infty}(\mathbb{R}^{\times}) \;.$$

• $\frac{1}{|e^{\varkappa_L t}-1|}$ can be extended to distributions on \mathbb{R} , but we continue writing $\frac{1}{|e^{\varkappa_L t}-1|}$ in $C^{-\infty}(\mathbb{R})$ (for clarity and simplicity).

Description of $\overline{H}^{\bullet}J(\mathcal{F})$

• $d_{\mathcal{F}}\rho = \rho\eta \quad \rightsquigarrow d_{\mathcal{F},\mu} = d_{\mathcal{F}} + \mu\eta \land = \rho^{-\mu}d_{\mathcal{F}}\rho^{\mu} \quad \text{on } H^{\pm\infty}(\mathring{\mathsf{M}}; \Lambda \mathcal{F})$ (leafwise Witten's perturbation). • $\phi_{\mu}^{t*} = \rho^{-\mu} \phi^{t*} \rho^{\mu}$ on $H^{\pm \infty}(\mathbf{\mathring{M}}; \Lambda \mathcal{F})$. • $\rightsquigarrow H^{\bullet}_{\mu}H^{\pm\infty}(\mathcal{F}), \quad \overline{H}^{\bullet}_{\mu}H^{\pm\infty}(\mathcal{F}) \quad \text{with } \phi^*_{\mu} = \{\phi^{t*}_{\mu}\}.$ • For $\mu < \mu'$, the following diagram is commutative: $(\rho^{\mu'}H^{\pm\infty}(\mathring{\mathbf{M}};\Lambda\mathcal{F}), d_{\mathcal{F}}) \xrightarrow{\text{inclusion}} (\rho^{\mu}H^{\pm\infty}(\mathring{\mathbf{M}};\Lambda\mathcal{F}), d_{\mathcal{F}})$ $\rho^{\mu'} \cong$ $\cong \rho^{\mu}$ $(H^{\pm\infty}(\mathring{\mathbf{M}};\Lambda\mathcal{F}),d_{\mathcal{F},\mu'}) \xrightarrow{\rho^{\mu'-\mu}} (H^{\pm\infty}(\mathring{\mathbf{M}};\Lambda\mathcal{F}),d_{\mathcal{F},\mu})$

Description of $\bar{H}^{\bullet}J(\mathcal{F})$

$$\begin{split} J(\mathcal{F}) &= \bigcup_{\mu} \boldsymbol{\rho}^{\mu} H^{\infty}(\mathbf{\mathring{M}}; \Lambda \mathcal{F}) \equiv \varinjlim H^{\infty}(\mathbf{\mathring{M}}; \Lambda \mathcal{F}) ,\\ d_{\mathcal{F}} &\equiv \varinjlim d_{\mathcal{F},\mu} , \quad \boldsymbol{\phi}^{t*} \equiv \varinjlim \boldsymbol{\phi}^{t*}_{\mu} \quad (\mu \downarrow -\infty) . \end{split}$$

Corollary (Á.-Kordyukov-Leichtnam 2023)

$$\bar{H}^{\bullet}J(\mathcal{F}) \equiv \varinjlim \bar{H}^{\bullet}_{\mu}H^{\infty}(\mathring{\mathcal{F}}), \quad \phi^{t*} \equiv \varinjlim \phi^{t*}_{\mu}.$$

Description of $\overline{H}^{\bullet}J'(\mathcal{F})$

$$J'(\mathcal{F}) = \bigcap_{\mu} \rho^{\mu} H^{-\infty}(\mathbf{\mathring{M}}; \Lambda \mathcal{F}) \equiv \varprojlim H^{-\infty}(\mathbf{\mathring{M}}; \Lambda \mathcal{F}) ,$$
$$d_{\mathcal{F}} \equiv \varprojlim d_{\mathcal{F},\mu} , \quad \phi^{t*} \equiv \varprojlim \phi^{t*}_{\mu} \quad (\mu \uparrow \infty) .$$

Corollary (Á.-Kordyukov-Leichtnam 2023)

$$ar{H}^{ullet}J'(\mathcal{F})\equiv arprojlim ar{H}^{ullet}_{\mu}H^{-\infty}(m{\mathcal{F}})\ , \quad \phi^{t\,*}\equiv arprojlim \phi^{t\,*}_{\mu}\ .$$

Contributions from $\overline{H}^{\bullet}J(\mathcal{F})$ and $\overline{H}^{\bullet}J'(\mathcal{F})$

- We proceed like in the case without preserved leaves, using $d_{\mathring{\mathcal{F}},\mu}$ and ϕ_{μ}^{t*} on $H^{\infty}(\mathring{M}; \Lambda \mathring{\mathcal{F}})$, and using the bounded geometry.
- $\bullet \ \rightsquigarrow$ smoothing operators

$$egin{aligned} & \mathcal{P}_{\mu,f} = \int_{\mathbb{R}} \phi^{t*}_{\mu} \cdot f(t) \, dt \circ \Pi_{\dot{\mathcal{F}},\mu} \ , \ & \mathcal{P}_{\mu,u,f} = \int_{\mathbb{R}} \phi^{t*}_{\mu} \cdot f(t) \, dt \circ e^{-u \Delta_{\dot{\mathcal{F}},\mu}} \end{aligned}$$

- $\rightsquigarrow C^{\infty}$ Schwartz kernels $K_{\mu,f}(p,q)$ and $K_{\mu,u,f}(p,q)$.
- But now $P_{\mu,f}$ and $P_{\mu,u,f}$ are not of trace class ($\mathring{\mathbf{M}}$ is not compact).

Contributions from
$$\overline{H}^{\bullet}J(\mathcal{F})$$
 and $\overline{H}^{\bullet}J'(\mathcal{F})$

• However $P_{\mu,u,f}$ has a b-trace:

^bTr
$$P_{\mu,u,f} = \lim_{\epsilon \downarrow 0} \left(\int_{\rho(p) \ge \epsilon} \operatorname{tr} K_{\mu,u,f}(p,p) - \ln \epsilon \cdot C \right) ,$$

where C is determined by this convergence (Melrose 1993).

Contributions from $\overline{H}^{\bullet}J(\mathcal{F})$ and $\overline{H}^{\bullet}J'(\mathcal{F})$

Theorem (Á.-Kordyukov-Leichtnam 2023)

$$\lim_{u\downarrow 0} {}^{\mathrm{b}}\mathsf{Str}\, P_{\mu,u,f} = {}^{\mathrm{b}}\!\chi_{\omega}(\mathring{\mathcal{F}})\,f(0) + \sum_{c}\ell(c)\sum_{k\neq 0}\epsilon_{c}(k\ell(c))\,f(k\ell(c))\;.$$

However ^bTr[A, B] $\neq 0$ (the b-trace is not a trace), $\rightarrow \frac{d}{du}^{b}$ Str $P_{\mu,u} \neq 0$.

Theorem (Á.-Kordyukov-Leichtnam 2023)

If $\dim \mathcal{F}$ is even, we can choose η and g_{b} so that

$$\langle Z_{\mu}, f \rangle = \lim_{u \uparrow \infty, v \downarrow 0} \left({}^{\mathrm{b}} \mathrm{Str} \, P_{\mu, u, f} - {}^{\mathrm{b}} \mathrm{Str} \, P_{\mu, v, f} \right)$$

defines a tempered distribution on \mathbb{R} , and $Z_{\mu} \to 0$ as $\mu \to \pm \infty$.

Contributions from $\overline{H}^{\bullet}J(\mathcal{F})$ and $\overline{H}^{\bullet}J'(\mathcal{F})$

 $\bullet \ \leadsto$ it makes sense to define

$$\langle L_{\mathrm{dis},J}(\phi), f \rangle = \lim_{\mu \uparrow \infty} \lim_{u \uparrow \infty} {}^{\mathrm{b}} \mathrm{Str} P_{\mu,u,f} ,$$

 $\langle L_{\mathrm{dis},J'}(\phi), f \rangle = \lim_{\mu \downarrow -\infty} \lim_{u \uparrow \infty} {}^{\mathrm{b}} \mathrm{Str} P_{\mu,u,f} .$

•
$$\rightsquigarrow L_{\mathrm{dis},J}(\phi) = L_{\mathrm{dis},J'}(\phi) = {}^{\mathrm{b}}\chi_{\omega}(\mathring{\mathcal{F}}) \,\delta_0 + \sum_{c} \ell(c) \sum_{k \neq 0} \epsilon_c(k\ell(c)) \,\delta_{k\ell(c)}.$$

• Actually, they can be considered as the same contribution from $I(\mathcal{F}) \cap I'(\mathcal{F}) = C^{\infty}(M; \Lambda \mathcal{F}).$

•
$$\rightsquigarrow L_{\mathrm{dis},J,J'}(\phi) = L_{\mathrm{dis},J}(\phi) = L_{\mathrm{dis},J'}(\phi).$$

Trace formula

Theorem (Á.-Kordyukov-Leichtnam 2023)

The above short exact sequences induce short exact sequences

$$\begin{split} 0 &\to H^{\bullet}K(\mathcal{F}) \xrightarrow{\iota_{*}} \bar{H}^{\bullet}I(\mathcal{F}) \xrightarrow{R_{*}} \bar{H}^{\bullet}J(\mathcal{F}) \to 0 , \\ 0 &\leftarrow H^{\bullet}K'(\mathcal{F}) \xleftarrow{\iota_{*}^{t}} \bar{H}^{\bullet}I'(\mathcal{F}) \xleftarrow{R_{*}^{t}} \bar{H}^{\bullet}J'(\mathcal{F}) \leftarrow 0 . \end{split}$$

•
$$\rightsquigarrow L_{\mathrm{dis}}(\phi) = L_{\mathrm{dis},I,I'}(\phi) = L_{\mathrm{dis},K,K'}(\phi) + L_{\mathrm{dis},J,J'}(\phi).$$

$$L_{\rm dis}(\phi) = \sum_{L} \frac{\chi(L)}{|e^{\varkappa_L t} - 1|} + {}^{\rm b}\!\chi_{\omega}(\mathring{\mathcal{F}}) \,\delta_0 + \sum_{c} \ell(c) \sum_{k \in \mathbb{Z}^{\times}} \epsilon_c(k) \,\delta_{k\ell(c)} \;.$$

Comparison with Weil's explicit formula when dim $\mathcal{F} = 2$

• The trace formula on \mathbb{R}^{\times} becomes:

$$\begin{split} 1 - (\text{``distributional trace'' of } \phi^* \text{ on degree } 1) + 1 \\ &= \sum_L \frac{\chi(L)}{|e^{\varkappa_L t} - 1|} + \sum_c \ell(c) \sum_{k \in \mathbb{Z}^{\times}} \epsilon_c(k) \, \delta_{k\ell(c)} \; . \end{split}$$

• Weil's explicit formula on \mathbb{R}^{\times} :

$$\begin{split} 1 - \sum_{\rho \in \hat{\zeta}^{-1}(0), \ \Re \rho \geq 0} e^{t\rho} + e^t \\ &= \frac{1}{1 - e^{-2t}} \, \mathbf{1}_{t > 0} + \frac{e^t}{1 - e^{2t}} \, \mathbf{1}_{t < 0} \\ &+ \sum_{\rho} \log \rho \sum_{k \in \mathbb{Z}^+} \left(\delta_{k \log \rho} + \rho^{-k} \delta_{-k \log \rho} \right) \, . \end{split}$$

Comparison with Weil's explicit formula when dim $\mathcal{F}=2$

• The trace formula on \mathbb{R}^{\times} becomes:

$$\begin{aligned} 1 - (\text{``distributional trace'' of } \phi^* \text{ on degree } 1) + 1 \\ &= \sum_{L} \frac{\chi(L)}{|e^{\varkappa_L t} - 1|} + \sum_{c} \ell(c) \sum_{k \in \mathbb{Z}^{\times}} \epsilon_c(k) \, \delta_{k\ell(c)} \, . \end{aligned}$$

• Weil's explicit formula on \mathbb{R}^{\times} :

$$\begin{split} 1 - \sum_{\rho \in \hat{\zeta}^{-1}(0), \ \Re \rho \ge 0} e^{t\rho} + e^t \\ &= \frac{1}{1 - e^{-2t}} \, \mathbf{1}_{t>0} + \frac{e^t}{1 - e^{2t}} \, \mathbf{1}_{t<0} \\ &+ \sum_{\rho} \log \rho \sum_{k \in \mathbb{Z}^+} \left(\delta_{k \log \rho} + \rho^{-k} \delta_{-k \log \rho} \right) \, . \end{split}$$

56 / 58

Final comment

- Deninger's programme contains the idea of an interpretation of Weil's explicit formula as a Lefschetz trace formula for a flow.
- It is a rough approximation of the arithmetic reality. But such an interpretation should exist and it would be interesting to reach it.
- We believe that the tools and methods used in our proof might be of interest for such a goal, though it's still far from being achieved.

Thank you very much for your attention!