A Spectral Sequence for Free Isometric Lie Algebra Actions

Paweł Raźny

Kraków 28.06.2023

Paweł Raźny A Spectral Sequence for Free Isometric Lie Algebra Actions

→ < Ξ → <</p>

Filtrations of cochain complexes

Let (C^{\bullet}, d) be a cochain complex of vector spaces over \mathbb{R} .

Definition

We say that a familly of subspaces $... \subset F^{p+1}C^k \subset F^pC^k \subset ... \subset C^k$ is a filtration of the complex C^{\bullet} if $d(F^pC^k) \subset F^pC^{k+1}$.

| 4 同 ト 4 ヨ ト 4 ヨ ト

Filtrations of cochain complexes

Let (C^{\bullet}, d) be a cochain complex of vector spaces over \mathbb{R} .

Definition

We say that a familly of subspaces $... \subset F^{p+1}C^k \subset F^pC^k \subset ... \subset C^k$ is a filtration of the complex C^{\bullet} if $d(F^pC^k) \subset F^pC^{k+1}$.

The spectral sequence associated to a filtration of C^{\bullet} is given by the following set of data:

• The 0-th page $(E_0^{p,q}, d_0^{p,q})$ given by $E_0^{p,q} = F^p C^{p+q} / F^{p+1} C^{p+q}$ and $d_0^{p,q} : E_0^{p,q} \to E_0^{p,q+1}$ is simply the morphism induced by d.

Filtrations of cochain complexes

Let (C^{\bullet}, d) be a cochain complex of vector spaces over \mathbb{R} .

Definition

We say that a familly of subspaces $... \subset F^{p+1}C^k \subset F^pC^k \subset ... \subset C^k$ is a filtration of the complex C^{\bullet} if $d(F^pC^k) \subset F^pC^{k+1}$.

The spectral sequence associated to a filtration of C^{\bullet} is given by the following set of data:

• The 0-th page $(E_0^{p,q}, d_0^{p,q})$ given by $E_0^{p,q} = F^p C^{p+q} / F^{p+1} C^{p+q}$ and $d_0^{p,q} : E_0^{p,q} \to E_0^{p,q+1}$ is simply the morphism induced by d.

2 The *r*-th page given inductively by:

$$E_{r}^{p,q} := Ker(d_{r-1}^{p,q}) / Im(d_{r-1}^{p,q}) = \frac{\{\alpha \in F^{p}C^{p+q} \mid d\alpha \in F^{p+r}C^{p+q+1}\}}{F^{p+1}C^{p+q} + d(F^{p-r+1}C^{p+q-1})}$$

Filtrations of cochain complexes

Let (C^{\bullet}, d) be a cochain complex of vector spaces over \mathbb{R} .

Definition

We say that a familly of subspaces $... \subset F^{p+1}C^k \subset F^pC^k \subset ... \subset C^k$ is a filtration of the complex C^{\bullet} if $d(F^pC^k) \subset F^pC^{k+1}$.

The spectral sequence associated to a filtration of C^{\bullet} is given by the following set of data:

• The 0-th page $(E_0^{p,q}, d_0^{p,q})$ given by $E_0^{p,q} = F^p C^{p+q} / F^{p+1} C^{p+q}$ and $d_0^{p,q} : E_0^{p,q} \to E_0^{p,q+1}$ is simply the morphism induced by d.

2 The *r*-th page given inductively by:

$$E_r^{p,q} := Ker(d_{r-1}^{p,q}) / Im(d_{r-1}^{p,q}) = \frac{\{\alpha \in F^p C^{p+q} \mid d\alpha \in F^{p+r} C^{p+q+1}\}}{F^{p+1} C^{p+q} + d(F^{p-r+1} C^{p+q-1})}$$

3 The *r*-th coboundary operator $d_r : E_r^{p,q} \to E_r^{p+r,q-r+1}$ defined again as just the map induced by *d* (due to the description of the *r*-th page this has the target specified above and is well defined).

Spectral Sequences

Goal and additional motivation Construction of the Spectral Sequence Wang-like long exact sequences

Spectral sequences

イロト イ団ト イヨト イヨト

æ

Spectral Sequences

Goal and additional motivation Construction of the Spectral Sequence Wang-like long exact sequences

Spectral sequences

We say that a spectral sequence converges to $E^{p,q}_{\infty}$, iff for all $r > R \in \mathbb{N}$ the operators $d^{p,q}_{r}$ vanish and $E^{p,q}_{r} \cong E^{p,q}_{\infty}$.

• • = • • = •

Spectral Sequences

Goal and additional motivation Construction of the Spectral Sequence Wang-like long exact sequences

Spectral sequences

We say that a spectral sequence converges to $E^{p,q}_{\infty}$, iff for all $r > R \in \mathbb{N}$ the operators $d^{p,q}_{r}$ vanish and $E^{p,q}_{r} \cong E^{p,q}_{\infty}$.

Proposition

If the only nonzero terms of $E_0^{p,q}$ are in the first quadrant then:

$$H^n(C^{\bullet}) = \bigoplus E^{p,q}_{\infty}.$$

Paweł Raźny A Spectral Sequence for Free Isometric Lie Algebra Actions

Leray-Serre spectral sequence

Let:

$$F \rightarrow E \rightarrow B$$
,

be a smooth locally trivial bundle with fiber F over B. We introduce the following filtration on the de Rham complex $\Omega^{\bullet}(E)$:

$$F^k\Omega^r(E) := \{ \alpha \in \Omega^r(E) \mid \iota_{X_{r-k+1}}...\iota_{X_1}\alpha = 0, \text{ for } X_1,...,X_{r-k+1} \in \Gamma(TF) \}.$$

| 4 同 ト 4 ヨ ト 4 ヨ ト

Leray-Serre spectral sequence

Let:

$$F \rightarrow E \rightarrow B$$
,

be a smooth locally trivial bundle with fiber F over B. We introduce the following filtration on the de Rham complex $\Omega^{\bullet}(E)$:

$$F^{k}\Omega^{r}(E) := \{ \alpha \in \Omega^{r}(E) \mid \iota_{X_{r-k+1}}...\iota_{X_{1}}\alpha = 0, \text{ for } X_{1},...,X_{r-k+1} \in \Gamma(TF) \}.$$

Theorem (Leray-Serre)

The spectral sequence $(E_r^{p,q}, d_r^{p,q})$ associated to the above filtration converges to $H_{dR}^{\bullet}(E)$. Moreover, if $\pi_1(B)$ acts trivially on $H^{\bullet}(F, \mathbb{Z})$, then:

 $E_2^{p,q} \cong H^p_{dR}(B) \otimes H^q_{dR}(F).$

イロト イポト イヨト イヨト

Case of principal G-bundles

Let G denote a compact connected Lie group with Lie algebra \mathfrak{g} . Then we have the following isomorphisms:

$$H^{ullet}_{dR}(G)\cong H^{ullet}_G(G)\cong H^{ullet}(\mathfrak{g}):=H^{ullet}(\bigwedge{}^{ullet}\mathfrak{g}^*,d_{\mathfrak{g}}),$$

where,

$$d_{\mathfrak{g}} \alpha(X_0,...,X_n) := \sum_{1 \leq i < j \leq n} (-1)^{i+j} \alpha([X_i,X_j],X_0,...,\hat{X}_i,...,\hat{X}_j,...,X_n).$$

Corollary

For a principal G-bundle $\pi: E \to B \cong E/G$ the spectral sequence $(E_r^{p,q}, d_r^{p,q})$ satisfies:

$$E_2^{p,q} \cong H^p_{dR}(B) \otimes H^q(\mathfrak{g}).$$

< ロ > < 同 > < 三 > < 三 >

Main Theorem

< ロ > < 回 > < 回 > < 回 > < 回 >

Main Theorem

Theorem

Let (M^{n+s}, g) be a compact manifold with an isometric locally free action of an *s*-dimensional connected Lie group *G*. Then there is a spectral sequence $E_r^{p,q}$ with:

- E₂^{p,q} = H^p(M/F, H^q(g)), where g is the Lie algebra of G and F is the foliation generated by the fundamental vector fields of the action ξ₁,...,ξ_s.
- $E_r^{p,q}$ converges to $H_{dR}^{\bullet}(M)$.

・ロッ ・雪 ・ ・ ヨ ・ ・

Main Theorem

Theorem

Let (M^{n+s}, g) be a compact manifold with an isometric locally free action of an *s*-dimensional connected Lie group *G*. Then there is a spectral sequence $E_r^{p,q}$ with:

- E₂^{p,q} = H^p(M/F, H^q(g)), where g is the Lie algebra of G and F is the foliation generated by the fundamental vector fields of the action ξ₁,...,ξ_s.
- $E_r^{p,q}$ converges to $H_{dR}^{\bullet}(M)$.

Theorem

Let (M^{n+s}, g) be a compact manifold with a Killing free action of an s-dimensional Lie algebra g. Then there is a spectral sequence $E_r^{p,q}$ with:

- E₂^{p,q} = H^p(M/F, H^q(g)), where F is the foliation generated by the fundamental vector fields of the action ξ₁,...,ξ_s.
- $E_r^{p,q}$ converges to $H_{dR}^{\bullet}(M)$.

Lyndon-Hochschield-Serre spectral sequence

Let \mathfrak{g} be an ideal in a Lie algebra \mathfrak{h} . Put:

$$\mathcal{F}^{k}(\bigwedge {}^{r}\mathfrak{h}^{*}):=\{\alpha\in\bigwedge {}^{r}\mathfrak{h}^{*}\mid \iota_{X_{r-k+1}}...\iota_{X_{1}}\alpha=0, \text{ for } X_{1},...,X_{r-k+1}\in\mathfrak{g}\},$$

and denote by $(E_r^{p,q}, d_r^{p,q})$ the spectral sequence associated to this filtration.

・ 同 ト ・ ヨ ト ・ ヨ ト

Lyndon-Hochschield-Serre spectral sequence

Let ${\mathfrak g}$ be an ideal in a Lie algebra ${\mathfrak h}.$ Put:

$$\mathcal{F}^{k}(\bigwedge {}^{r}\mathfrak{h}^{*}):=\{\alpha\in\bigwedge {}^{r}\mathfrak{h}^{*}\mid \iota_{X_{r-k+1}}...\iota_{X_{1}}\alpha=0, \text{ for } X_{1},...,X_{r-k+1}\in\mathfrak{g}\},$$

and denote by $(E_r^{p,q}, d_r^{p,q})$ the spectral sequence associated to this filtration.

Theorem (Lyndon-Hochschield-Serre)

The spectral sequence $(E_r^{p,q}, d_r^{p,q})$ converges to $H^{\bullet}(\mathfrak{h})$ and satisfies:

 $E_2^{p,q}\cong H^p(\mathfrak{h}/\mathfrak{g})\otimes H^q(\mathfrak{g}).$

Lyndon-Hochschield-Serre spectral sequence

Let ${\mathfrak g}$ be an ideal in a Lie algebra ${\mathfrak h}.$ Put:

$$\mathcal{F}^{k}(\bigwedge {}^{r}\mathfrak{h}^{*}):=\{\alpha\in\bigwedge {}^{r}\mathfrak{h}^{*}\mid \iota_{X_{r-k+1}}...\iota_{X_{1}}\alpha=0, \text{ for } X_{1},...,X_{r-k+1}\in\mathfrak{g}\},$$

and denote by $(E_r^{p,q}, d_r^{p,q})$ the spectral sequence associated to this filtration.

Theorem (Lyndon-Hochschield-Serre)

The spectral sequence $(E_r^{p,q}, d_r^{p,q})$ converges to $H^{\bullet}(\mathfrak{h})$ and satisfies:

$$E_2^{p,q}\cong H^p(\mathfrak{h}/\mathfrak{g})\otimes H^q(\mathfrak{g}).$$

Example

Let \mathbb{R} be a dense subgroup of \mathbb{T}^2 then the above spectral sequence converges to $H^{\bullet}(\mathfrak{g}_{\mathbb{R}^2}) \cong H^{\bullet}_{d\mathbb{R}}(\mathbb{T}^2)$. Despite the orbits not being compact.

< ロ > < 同 > < 三 > < 三 >

Gysin sequence for Sasakian manifolds

Let (M, g, ξ) be a Sasakian manifold with $\eta := g(\xi, \bullet)$. Moreover, let T be the closure of the 1-parameter subgroup of isometries generated by the flow of ξ .

・ 同 ト ・ ヨ ト ・ ヨ ト

Gysin sequence for Sasakian manifolds

Let (M, g, ξ) be a Sasakian manifold with $\eta := g(\xi, \bullet)$. Moreover, let T be the closure of the 1-parameter subgroup of isometries generated by the flow of ξ .

Theorem

There is a short exact sequence:

$$0 \to \Omega^{\bullet}(M/\mathcal{F}) \to \Omega^{\bullet}_{\mathcal{T}}(M) \xrightarrow{\iota_{\xi}} \Omega^{\bullet-1}(M/\mathcal{F}) \to 0.$$

which induces a long exact sequence:

$$...
ightarrow H^k(M/\mathcal{F})
ightarrow H^k_{dR}(M) \xrightarrow{\iota_{\xi}} H^{k-1}(M/\mathcal{F}) \xrightarrow{\wedge d\eta} H^{k+1}(M/\mathcal{F})
ightarrow ...$$

< ロ > < 同 > < 三 > < 三 >

Gysin sequence for Sasakian manifolds

Let (M, g, ξ) be a Sasakian manifold with $\eta := g(\xi, \bullet)$. Moreover, let T be the closure of the 1-parameter subgroup of isometries generated by the flow of ξ .

Theorem

There is a short exact sequence:

$$0 \to \Omega^{\bullet}(M/\mathcal{F}) \to \Omega^{\bullet}_{\mathcal{T}}(M) \xrightarrow{\iota_{\xi}} \Omega^{\bullet-1}(M/\mathcal{F}) \to 0.$$

which induces a long exact sequence:

$$.. o H^k(M/\mathcal{F}) o H^k_{dR}(M) \xrightarrow{\iota_{\xi}} H^{k-1}(M/\mathcal{F}) \xrightarrow{\wedge d\eta} H^{k+1}(M/\mathcal{F}) o ...$$

Remark

This is a generalization of the Gysin sequence for circle bundles which itself can be derived from the Leray-Serre spectral sequence.

< ロ > < 同 > < 三 > < 三

Commutative case

Let G be an s-dimensional abelian Lie group acting on a compact Riemannian (n + s)-manifold (M, g) by isometries with fundamental vector fields $\{\xi_1, ..., \xi_s\}$.

< ロ > < 同 > < 三 > < 三 > <

Commutative case

Let G be an s-dimensional abelian Lie group acting on a compact Riemannian (n + s)-manifold (M, g) by isometries with fundamental vector fields $\{\xi_1, ..., \xi_s\}$. Moreover, let $T := \overline{\langle \phi_{\xi_1}, ..., \phi_{\xi_s} \rangle}$ and put:

 $F^{k}\Omega_{T}^{r}(M) := \{ \alpha \in \Omega_{T}^{r}(M) \mid \iota_{X_{r-k+1}} ... \iota_{X_{1}} \alpha = 0, \text{ for } X_{1}, ..., X_{r-k+1} \in \Gamma(T\mathcal{F}) \}.$

and denote by $(E_r^{p,q}, d_r^{p,q})$ the spectral sequence associated to this filtration.

イロト イポト イヨト イヨト ニヨー

Commutative case

Let G be an s-dimensional abelian Lie group acting on a compact Riemannian (n + s)-manifold (M, g) by isometries with fundamental vector fields $\{\xi_1, ..., \xi_s\}$. Moreover, let $T := \overline{\langle \phi_{\xi_1}, ..., \phi_{\xi_s} \rangle}$ and put:

$$F^{k}\Omega_{T}^{r}(M) := \{ \alpha \in \Omega_{T}^{r}(M) \mid \iota_{X_{r-k+1}}...\iota_{X_{1}}\alpha = 0, \text{ for } X_{1},...,X_{r-k+1} \in \Gamma(T\mathcal{F}) \}.$$

and denote by $(E_r^{p,q}, d_r^{p,q})$ the spectral sequence associated to this filtration.

Theorem (Raźny)

The spectral sequence $(E_r^{p,q}, d_r^{p,q})$ converges to $H_{dR}^{\bullet}(M)$ and satisfies:

 $E_2^{p,q}\cong H^p(M/\mathcal{F})\otimes H^q(\mathfrak{g}).$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 シののや

Commutative case

Let G be an s-dimensional abelian Lie group acting on a compact Riemannian (n + s)-manifold (M, g) by isometries with fundamental vector fields $\{\xi_1, ..., \xi_s\}$. Moreover, let $T := \overline{\langle \phi_{\xi_1}, ..., \phi_{\xi_s} \rangle}$ and put:

$$F^{k}\Omega_{T}^{r}(M) := \{ \alpha \in \Omega_{T}^{r}(M) \mid \iota_{X_{r-k+1}}...\iota_{X_{1}}\alpha = 0, \text{ for } X_{1},...,X_{r-k+1} \in \Gamma(T\mathcal{F}) \}.$$

and denote by $(E_r^{p,q}, d_r^{p,q})$ the spectral sequence associated to this filtration.

Theorem (Raźny)

The spectral sequence $(E_r^{p,q}, d_r^{p,q})$ converges to $H_{dR}^{\bullet}(M)$ and satisfies:

 $E_2^{p,q}\cong H^p(M/\mathcal{F})\otimes H^q(\mathfrak{g}).$

Idea of the proof

When the group is abelian we can prove that $\Omega^{\bullet}_{T}(M)$ is spanned by $\eta_{i_{1}}...\eta_{i_{q}}\alpha$ for $\alpha \in \Omega^{\bullet}(M/\mathcal{F})$.

・ロト ・ 一 ト ・ ヨ ト ・ 日 ト

\mathcal{S} -structures

Definition (Blair)

A manifold $(M^{2n+s}, f, g, \{\xi_1, ... \xi_s\})$ is an almost \mathcal{K} -manifold if:

・ロト ・ 四ト ・ ヨト ・ ヨト

\mathcal{S} -structures

Definition (Blair)

A manifold $(M^{2n+s}, f, g, \{\xi_1, ... \xi_s\})$ is an almost K-manifold if:

1 *f* is a (1,1)-tensor with, $f^3 = -f$ and $Ker(f_x) = \langle \xi_{1x}, ..., \xi_{sx} \rangle$.

S-structures

Definition (Blair)

- A manifold $(M^{2n+s}, f, g, \{\xi_1, ... \xi_s\})$ is an almost \mathcal{K} -manifold if:
 - 1 f is a (1,1)-tensor with, $f^3 = -f$ and $Ker(f_x) = \langle \xi_{1x}, ..., \xi_{sx} \rangle$.
 - 2 g is a metric with, $F(\bullet, \bullet) = g(\bullet, f \bullet)$ a closed 2-form.

イロト イヨト イヨト

\mathcal{S} -structures

Definition (Blair)

- A manifold $(M^{2n+s}, f, g, \{\xi_1, ... \xi_s\})$ is an almost \mathcal{K} -manifold if:
 - **1** *f* is a (1,1)-tensor with, $f^3 = -f$ and $Ker(f_x) = \langle \xi_{1x}, ..., \xi_{sx} \rangle$.
 - 2 g is a metric with, $F(\bullet, \bullet) = g(\bullet, f \bullet)$ a closed 2-form.
 - The vector fields {ξ₁,...,ξ_s} are Killing and orthonormal with dual 1-forms {η₁,...,η_s}.

イロト イポト イヨト イヨト 三日

\mathcal{S} -structures

Definition (Blair)

- A manifold $(M^{2n+s}, f, g, \{\xi_1, ... \xi_s\})$ is an almost K-manifold if:
 - 1 f is a (1,1)-tensor with, $f^3 = -f$ and $Ker(f_x) = \langle \xi_{1x}, ..., \xi_{sx} \rangle$.
 - 2 g is a metric with, $F(\bullet, \bullet) = g(\bullet, f \bullet)$ a closed 2-form.
 - The vector fields {ξ₁,...,ξ_s} are Killing and orthonormal with dual 1-forms {η₁,...,η_s}.

If in addition the above set of data satisfies the equation:

$$[f,f]+\sum_{k=1}^{s}\xi_{k}\otimes d\eta_{k}=0,$$

where [f, f] is the Nijenhuis tensor of f, then M is a K-manifold.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 シののや

\mathcal{S} -structures

Definition (Blair)

- A manifold $(M^{2n+s}, f, g, \{\xi_1, ... \xi_s\})$ is an almost \mathcal{K} -manifold if:
 - 1 f is a (1,1)-tensor with, $f^3 = -f$ and $Ker(f_x) = \langle \xi_{1x}, ..., \xi_{sx} \rangle$.
 - 2 g is a metric with, $F(\bullet, \bullet) = g(\bullet, f \bullet)$ a closed 2-form.
 - The vector fields {ξ₁,...,ξ_s} are Killing and orthonormal with dual 1-forms {η₁,...,η_s}.

If in addition the above set of data satisfies the equation:

$$[f,f]+\sum_{k=1}^{s}\xi_{k}\otimes d\eta_{k}=0,$$

where [f, f] is the Nijenhuis tensor of f, then M is a K-manifold.

Definition (Blair)

An (almost) \mathcal{K} -structure on a manifold M^{2n+s} is called an (almost) \mathcal{S} -structure if E = dwPawel Raźny A Spectral Sequence for Free Isometric Lie Algebra Actions

Application of the spectral sequence

s=0	s=1	general
-	Quasi-K-contact	Almost \mathcal{K}
-	Quasi-Sasaki	\mathcal{K}
Almost Kähler	K-contact	Almost ${\cal S}$
Kähler	Sasaki	S

Application to $\mathcal S\text{-structures}$

Paweł Raźny A Spectral Sequence for Free Isometric Lie Algebra Actions

< ロ > < 同 > < 三 > < 三

Application of the spectral sequence

s=0	s=1	general
-	Quasi-K-contact	Almost \mathcal{K}
-	Quasi-Sasaki	\mathcal{K}
Almost Kähler	K-contact	Almost ${\cal S}$
Kähler	Sasaki	S

Application to \mathcal{S} -structures

The basic Betti numbers of \(\mathcal{F}_{Ker(f)}\) are determine by the Betti numbers of \(M.\)

・ 同 ト ・ ヨ ト ・ ヨ

Application of the spectral sequence

s=0	s=1	general
-	Quasi-K-contact	Almost \mathcal{K}
-	Quasi-Sasaki	\mathcal{K}
Almost Kähler	K-contact	Almost ${\cal S}$
Kähler	Sasaki	S

Application to \mathcal{S} -structures

- **()** The basic Betti numbers of $\mathcal{F}_{Ker(f)}$ are determine by the Betti numbers of M.
- **2** Harmonic forms are spanned by $\alpha = (\eta_1 \eta_{i_1})...(\eta_1 \eta_{i_q})\beta$ where β is primitive basic harmonic and $*\alpha$.

< ロ > < 同 > < 三 > < 三 >

Application of the spectral sequence

s=0	s=1	general
-	Quasi-K-contact	Almost \mathcal{K}
-	Quasi-Sasaki	κ
Almost Kähler	K-contact	Almost ${\cal S}$
Kähler	Sasaki	S

Application to S-structures

- **()** The basic Betti numbers of $\mathcal{F}_{Ker(f)}$ are determine by the Betti numbers of M.
- **2** Harmonic forms are spanned by $\alpha = (\eta_1 \eta_{i_1})...(\eta_1 \eta_{i_q})\beta$ where β is primitive basic harmonic and $*\alpha$.
- **3** The basic Hodge numbers of $(\mathcal{F}_{Ker(f)}, f)$ are invariant under deformations.

"Right" invariant metric

Problems

() The forms η_i are not left invariant. Hence, invariant forms can be much more complicated than $\eta_{i_1}...\eta_{i_a}\alpha$ (with α basic).

< ロ > < 同 > < 三 > < 三 >

"Right" invariant metric

Problems

- **()** The forms η_i are not left invariant. Hence, invariant forms can be much more complicated than $\eta_{i_1} \dots \eta_{i_a} \alpha$ (with α basic).
- 3 If we try to study the family of vector spaces spanned by $\eta_{i_1}...\eta_{i_q}\alpha$ (with α basic) then in general they do not form a cochain complex.

"Right" invariant metric

Problems

- **(**) The forms η_i are not left invariant. Hence, invariant forms can be much more complicated than $\eta_{i_1}...\eta_{i_a}\alpha$ (with α basic).
- 3 If we try to study the family of vector spaces spanned by $\eta_{i_1}...\eta_{i_q}\alpha$ (with α basic) then in general they do not form a cochain complex.

Example (Toy)

For a Lie group G consider the left action of G on itself. Then:

- **1** The fundamental vector fields $\{\xi_1, ..., \xi_s\}$ of the action are right invariant.
- 2 If $\{X_1, ..., X_s\}$ are left invariant then $[X_i, X_j]_e = -[\xi_i, \xi_j]_e$.
- $[X_i,\xi_j]=0.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 シののや

"Right" invariant metric

Problems

- The forms η_i are not left invariant. Hence, invariant forms can be much more complicated than η_{i1}...η_{iq}α (with α basic).
- 2 If we try to study the family of vector spaces spanned by $\eta_{i_1}...\eta_{i_q}\alpha$ (with α basic) then in general they do not form a cochain complex.

Example (Toy)

For a Lie group G consider the left action of G on itself. Then:

- **1** The fundamental vector fields $\{\xi_1, ..., \xi_s\}$ of the action are right invariant.
- 2 If $\{X_1, ..., X_s\}$ are left invariant then $[X_i, X_j]_e = -[\xi_i, \xi_j]_e$.
- $[X_i,\xi_j]=0.$

Definition

We say that a metric g on M is virtually right invariant if $g(\xi_i, \xi_j) = \text{const.}$ We say that a metric is virtually bi-invariant if it is left invariant and virtually right

Paweł Raźny A Spectral Sequence for Free Isometric Lie Algebra Actions

Existence of virtually bi-invariant metrics

Proposition

If the action of \mathfrak{g} on (M, g) is free and isometric then M admits a new metric g' which is virtually bi-invariant.

Sketch of proof:

< ロ > < 同 > < 三 > < 三 >

Existence of virtually bi-invariant metrics

Proposition

If the action of \mathfrak{g} on (M, g) is free and isometric then M admits a new metric g' which is virtually bi-invariant.

Sketch of proof:

1 The action preserves $T\mathcal{F} \oplus (T\mathcal{F})^{\perp}$.

< ロ > < 同 > < 三 > < 三 >

Existence of virtually bi-invariant metrics

Proposition

If the action of \mathfrak{g} on (M, g) is free and isometric then M admits a new metric g' which is virtually bi-invariant.

Sketch of proof:

- **1** The action preserves $T\mathcal{F} \oplus (T\mathcal{F})^{\perp}$.
- 2 The action preserves the splitting of the metric $g = g_T \oplus g_{\perp}$.

< ロ > < 同 > < 三 > < 三 > <

Existence of virtually bi-invariant metrics

Proposition

If the action of \mathfrak{g} on (M, g) is free and isometric then M admits a new metric g' which is virtually bi-invariant.

Sketch of proof:

- **1** The action preserves $T\mathcal{F} \oplus (T\mathcal{F})^{\perp}$.
- 2 The action preserves the splitting of the metric $g = g_T \oplus g_{\perp}$.
- 9 Put G :=< \(\phi_{\xi_1}, ..., \(\phi_{\xi_s} > \) and let g_G be a bi-invariant metric on G (restriction of such metric on G).

Existence of virtually bi-invariant metrics

Proposition

If the action of \mathfrak{g} on (M, g) is free and isometric then M admits a new metric g' which is virtually bi-invariant.

Sketch of proof:

- **1** The action preserves $T\mathcal{F} \oplus (T\mathcal{F})^{\perp}$.
- 2 The action preserves the splitting of the metric $g = g_T \oplus g_{\perp}$.
- Put G :=< \(\phi_{\xi_1}, ..., \(\phi_{\xi_s} > \) and let g_G be a bi-invariant metric on G (restriction of such metric on G).
- Sonstruct a new metric g'_T on $T\mathcal{F}$ as $g'_T(\xi_i, \xi_j) = g_G(\tilde{\xi}_i, \tilde{\xi}_j)$.

Existence of virtually bi-invariant metrics

Proposition

If the action of \mathfrak{g} on (M, g) is free and isometric then M admits a new metric g' which is virtually bi-invariant.

Sketch of proof:

- **1** The action preserves $T\mathcal{F} \oplus (T\mathcal{F})^{\perp}$.
- 2 The action preserves the splitting of the metric $g = g_T \oplus g_{\perp}$.
- Put G :=< \(\phi_{\xi_1}, ..., \(\phi_{\xi_s} > \) and let g_G be a bi-invariant metric on G (restriction of such metric on G).
- **(**) Construct a new metric g'_T on $T\mathcal{F}$ as $g'_T(\xi_i, \xi_j) = g_G(\tilde{\xi}_i, \tilde{\xi}_j)$.

$$I e e g'_T \oplus g_{\perp}.$$

"Right" invariant forms

The splitting $T\mathcal{F} \oplus (T\mathcal{F})^{\perp}$ induces a splittin on forms with respect to which:

$$d = d^{(0,1)} + d^{(1,0)} + d^{(2,-1)}$$

Proposition

For g virtually bi-invariant put $\eta_i = g(\xi_i, \bullet)$. Then:

э

"Right" invariant forms

The splitting $T\mathcal{F} \oplus (T\mathcal{F})^{\perp}$ induces a splittin on forms with respect to which:

$$d = d^{(0,1)} + d^{(1,0)} + d^{(2,-1)}$$

Proposition

For g virtually bi-invariant put $\eta_i = g(\xi_i, \bullet)$. Then:

Solution The cochain complex $(\bigwedge^{\bullet} span(\eta_1, ..., \eta_s), d^{(0,1)})$ is isomorphic to the Lie algebra cochain complex of \mathfrak{g} (with $-d_{\mathfrak{g}}$).

・ロッ ・雪 ・ ・ ヨ ・ ・

"Right" invariant forms

The splitting $T\mathcal{F} \oplus (T\mathcal{F})^{\perp}$ induces a splittin on forms with respect to which:

$$d = d^{(0,1)} + d^{(1,0)} + d^{(2,-1)}$$

Proposition

For g virtually bi-invariant put $\eta_i = g(\xi_i, \bullet)$. Then:

Solution The cochain complex $(\bigwedge^{\bullet} span(\eta_1, ..., \eta_s), d^{(0,1)})$ is isomorphic to the Lie algebra cochain complex of \mathfrak{g} (with $-d_{\mathfrak{g}}$).

2)
$$d^{(1,0)}\eta_i = 0$$
 for each $i \in \{1,...,s\}$.

・ロッ ・雪 ・ ・ ヨ ・ ・

"Right" invariant forms

The splitting $T\mathcal{F} \oplus (T\mathcal{F})^{\perp}$ induces a splittin on forms with respect to which:

$$d = d^{(0,1)} + d^{(1,0)} + d^{(2,-1)}$$

Proposition

For g virtually bi-invariant put $\eta_i = g(\xi_i, \bullet)$. Then:

The cochain complex (Λ[•] span(η₁,...,η_s), d^(0,1)) is isomorphic to the Lie algebra cochain complex of g (with -d_g).

2)
$$d^{(1,0)}\eta_i = 0$$
 for each $i \in \{1,...,s\}$.

)
$$d^{(2,-1)}\eta_i$$
 is basic for each $i \in \{1, ..., s\}$.

"Right" invariant forms

The splitting $T\mathcal{F} \oplus (T\mathcal{F})^{\perp}$ induces a splittin on forms with respect to which:

$$d = d^{(0,1)} + d^{(1,0)} + d^{(2,-1)}$$

Proposition

For g virtually bi-invariant put $\eta_i = g(\xi_i, \bullet)$. Then:

The cochain complex (Λ[•] span(η₁,...,η_s), d^(0,1)) is isomorphic to the Lie algebra cochain complex of g (with -d_g).

2)
$$d^{(1,0)}\eta_i = 0$$
 for each $i \in \{1, ..., s\}$.

$$d^{(2,-1)}\eta_i$$
 is basic for each $i \in \{1, ..., s\}$.

Corollary

The graded vector subspace $\Omega_{\mathfrak{g}}^{\bullet}(M) \subset \Omega^{\bullet}(M)$ spanned by differential forms of the form $\eta_{i_1}...\eta_{i_k}\alpha$ where α is basic, is in fact a subcomplex of $\Omega^{\bullet}(M)$.

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト

э

The spectral sequence

Put:

$$F^{k}\Omega_{\mathfrak{g}}^{r}(M) := \{ \alpha \in \Omega_{\mathfrak{g}}^{r}(M) \mid \iota_{X_{r-k+1}}...\iota_{X_{1}}\alpha = 0, \text{ for } X_{1},...,X_{r-k+1} \in \Gamma(T\mathcal{F}) \}.$$

and denote by $(E_r^{p,q}, d_r^{p,q})$ the spectral sequence associated to this filtration.

(ロ) (日) (日) (日) (日)

The spectral sequence

Put:

$$F^{k}\Omega_{\mathfrak{g}}^{r}(M) := \{ \alpha \in \Omega_{\mathfrak{g}}^{r}(M) \mid \iota_{X_{r-k+1}} ... \iota_{X_{1}} \alpha = 0, \text{ for } X_{1}, ..., X_{r-k+1} \in \Gamma(T\mathcal{F}) \}.$$

and denote by $(E_r^{p,q}, d_r^{p,q})$ the spectral sequence associated to this filtration.

Theorem (Raźny)

The spectral sequence $(E_r^{p,q}, d_r^{p,q})$ converges to $H_{dR}^{\bullet}(M)$ and satisfies:

 $E_2^{p,q}\cong H^p(M/\mathcal{F})\otimes H^q(\mathfrak{g}).$

イロト イヨト イヨト

The spectral sequence

Put:

$$F^k\Omega_\mathfrak{g}^r(M):=\{\alpha\in\Omega_\mathfrak{g}^r(M)\mid \iota_{X_{r-k+1}}...\iota_{X_1}\alpha=0, \text{ for } X_1,...,X_{r-k+1}\in\Gamma(\mathcal{TF})\}.$$

and denote by $(E_r^{p,q}, d_r^{p,q})$ the spectral sequence associated to this filtration.

Theorem (Raźny)

The spectral sequence $(E_r^{p,q}, d_r^{p,q})$ converges to $H_{dR}^{\bullet}(M)$ and satisfies:

$$E_2^{p,q}\cong H^p(M/\mathcal{F})\otimes H^q(\mathfrak{g}).$$

Theorem

Let $a : \Omega^{\bullet}(M) \to \Omega^{\bullet}_{\mathfrak{g}}$ be given by $a(\eta_{i_1,\ldots,\eta_{i_q}}\alpha) = \eta_{i_1,\ldots,\eta_{i_q}}\tilde{a}(\alpha)$ where \tilde{a} is the averaging with respect to \overline{G} . Then the splitting $\Omega^{\bullet}(M) = \Omega^{\bullet}_{\mathfrak{g}}(M) \oplus Ker(a)$ induces a splitting in cohomology and on the spectral sequence.

< ロ > < 同 > < 三 > < 三 >

Finishing the proof

Proposition

Let (M, g) be a compact Riemannian manifold with a free Killing action of g. Moreover, let U and V be open saturated subsets. Then the following short sequences of chain complexes is exact:

 $0 \to \Omega^{\bullet}_0(U \cup V) \to \Omega^{\bullet}_0(U) \oplus \Omega^{\bullet}_0(V) \to \Omega^{\bullet}_0(U \cap V) \to 0.$

Finishing the proof

Proposition

Let (M, g) be a compact Riemannian manifold with a free Killing action of \mathfrak{g} . Moreover, let U and V be open saturated subsets. Then the following short sequences of chain complexes is exact:

 $0 o \Omega^{ullet}_0(U \cup V) o \Omega^{ullet}_0(U) \oplus \Omega^{ullet}_0(V) o \Omega^{ullet}_0(U \cap V) o 0.$

Proposition

Let (M, g) be a compact Riemannian manifold with a free Killing action of \mathfrak{g} and let V be a saturated open subset admitting a slice through some orbit contained in V. Then $H_0^{\bullet}(V) = 0$.

Finishing the proof

Proposition

Let (M, g) be a compact Riemannian manifold with a free Killing action of \mathfrak{g} . Moreover, let U and V be open saturated subsets. Then the following short sequences of chain complexes is exact:

 $0 o \Omega^{ullet}_0(U \cup V) o \Omega^{ullet}_0(U) \oplus \Omega^{ullet}_0(V) o \Omega^{ullet}_0(U \cap V) o 0.$

Proposition

Let (M, g) be a compact Riemannian manifold with a free Killing action of \mathfrak{g} and let V be a saturated open subset admitting a slice through some orbit contained in V. Then $H_0^{\bullet}(V) = 0$.

Proposition

Let (M, g) be a compact Riemannian manifold with a free Killing action of g. M admits a finite cover such that any intersection of sets of this cover admits a slice.

Low codimension consequences

Theorem

Let (M^{1+s}, g) be a compact oriented Riemannian manifold with a free Killing action of g. Then:

$$H^{\bullet}(M) \cong H^{\bullet}(\mathfrak{g}) \oplus H^{\bullet-1}(\mathfrak{g})$$

イロト イポト イヨト イヨト

э

Low codimension consequences

Theorem

Let (M^{1+s}, g) be a compact oriented Riemannian manifold with a free Killing action of g. Then:

$$H^{\bullet}(M)\cong H^{\bullet}(\mathfrak{g})\oplus H^{\bullet-1}(\mathfrak{g})$$

Theorem

Let (M^{2+s}, g) be a compact oriented Riemannian manifold with a free Killing action of g and $H^1(M) = 0$. Then we have a long exact sequence:

$$...
ightarrow H^k(M)
ightarrow H^k(\mathfrak{g})
ightarrow H^{k-1}(\mathfrak{g})
ightarrow H^{k+1}(M)
ightarrow ...$$

イロト イボト イヨト イヨト

Codimension 3 consequences

Theorem

Let (M^{3+s}, g) be a compact oriented Riemannian manifold with a free Killing action of g and $H^1(M) = 0$. Then we have a long exact sequence:

$$...
ightarrow H^k(M)
ightarrow H^k(\mathfrak{g})
ightarrow H^{k-2}(\mathfrak{g})
ightarrow H^{k+1}(M)
ightarrow ...$$

Moreover, $0 \cong H^1(\mathfrak{g}) \cong \mathfrak{g}/[\mathfrak{g},\mathfrak{g}].$

< ロ > < 同 > < 三 > < 三 >

Codimension 3 consequences

Theorem

Let (M^{3+s}, g) be a compact oriented Riemannian manifold with a free Killing action of g and $H^1(M) = 0$. Then we have a long exact sequence:

$$...
ightarrow H^k(M)
ightarrow H^k(\mathfrak{g})
ightarrow H^{k-2}(\mathfrak{g})
ightarrow H^{k+1}(M)
ightarrow ...$$

Moreover, $0 \cong H^1(\mathfrak{g}) \cong \mathfrak{g}/[\mathfrak{g},\mathfrak{g}].$

Example

 \mathbb{R}^{s} cannot act locally freely on M^{s+3} by isometries (under the above conditions).

< ロ > < 同 > < 三 > < 三

Thank you For your attention.

Paweł Raźny A Spectral Sequence for Free Isometric Lie Algebra Actions

▲ 同 ▶ ▲ 国 ▶ ▲ 国